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Abstract. Interactions between proteins are key to most biological pro-
cesses, but thorough testing can be costly in terms of money and time.
Computational approaches for predicting such interactions are an impor-
tant alternative. This study presents a novel approach to this predic-
tion using calibrated synthetic networks as input for training a decision
tree ensemble model with relevant topological information. This trained
model is later used for predicting interactions on the human interactome,
as a case study. Results show that deterministic metrics perform better
than their stochastic counterparts, although a random forest model shows
a feature combination case with comparable precision results.

Keywords: Duplication-Divergence model · Protein Interaction
Prediction · Edge Embeddings · Human Interactome.

1 Introduction

Interactions between proteins are key to most biological processes inside
cells [12]. Protein-protein interactions (PPIs) underlie a variety of interdepen-
dent mechanisms, including signal transduction, homeostasis control, and stress
responses. They play an important role in physiological and developmental pro-
cesses such as protein phosphorylation, transcriptional co-factor recruitment,
and transporter activation [32]. Based on the outcome of numerous Yeast-2-
Hybrid testing (Y2H), networks of PPIs can be constructed [20,25]. However,
identifying protein interactions through Y2H is costly both in terms of time and
resources [11,15]. For example, constructing a PPI network for an organism with
2,000 proteins requires testing of about 2 million potential interactions. More-
over, it has been shown that a large amount of false negatives and positives
(sometimes near 20%) are found in PPIs generated from several techniques such
as Y2H, Tandem Affinity Purification Mass Spectrometry, and ChIP-Seq [14]. In
that regard, computational tools for narrowing down the combinatorial search
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space of such interactions offer a cost-effective alternative, especially for organ-
isms that produce a large number of proteins. A further limitation is that many
interactomes, such as the human one, lack many relations [27].

This paper explores the prediction of PPIs using a computational approach
and information available from an existing PPI network (in-silico prediction).
The proposed approach leverages the intrinsic topological information of the
neighborhood of a protein using deterministic and non-deterministic method to
train a classification model in charge of predicting the existence of interactions.
Several decision-tree models are tested, in particular random forests [22]; they
seem to perform better at PPI prediction. The trained model is used on a PPI
constructed from experimental evidence; the precision of the model is validated
against a more recent version of the PPI for the same organism.

This study applies the proposed approach to the human interactome.
XGBoost and random forest classifiers are selected for the prediction task, and
are trained using synthetic networks obtained from the duplication-divergence
(DD) graph model [9]. The topological information from the synthetic networks
is extracted with two different approaches: the first one computes higher degree
neighborhood scores (closures), and the second one uses random walks and an
unsupervised deep learning model (embeddings). The prediction PPI is the inter-
actome from the Human Reference Protein Interactome Mapping Project [13]
and the validation PPI is an assembly of 12 databases constructed by Gysi et
al [5]. The results show that deterministic approaches achieve greater precision
than stochastic ones, but also suggest that a greater spectrum of classification
models and embedding techniques must be explored. Ultimately, these results
highlight the need of broader exploration of in-silico approaches that, supported
by biologically relevant information, elucidate the interactions of proteins in any
given organism.

Outline. The remainder of the paper is organized as follows. Section 2
presents preliminary notions used throughout the paper. Section 3 presents the
proposed approach, and introduces the steps required for the generation of the
synthetic networks. In Section 4 a case study on the human interactome is devel-
oped. Section 5 summarizes related work and concludes the paper.

2 Preliminaries

This section presents preliminaries on closures on graphs, feature learning with
node2vec, and ensemble learning.

2.1 Network Closures

Let G = (V,E) be an undirected graph with n = |V | proteins as nodes and
m = |E| pairwise interactions between nodes as edges. The graph G can be
represented as a Boolean adjacency matrix AG of size n2: for 0 ≤ i, j < n, the
entry AG(i, j) is 1 if there is a direct interaction between proteins i and j, and
0 otherwise. Since G is undirected, AG is symmetric.
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Computing the number of paths of length 2 and 3 in G can be done with
(AG)2 and (AG)3, respectively. Another important metric in PPI analysis is the
degree-normalized count of the paths of length 3, which is computed as in [10]:

L3(i, j) =
∑

p,q∈V

AG(i, p) ·AG(p, q) ·AG(q, j)√
k(p) · k(q)

,

where k(i) is the number of neighbors of vi, known as its degree. Local-community
information extracted from the induced graph of the paths of length 3 is also rel-
evant to predict PPI networks [17]. This metric, known as CH2 −L3, maximizes
internal links in local communities and minimizes external ones, according to a
topology-driven mechanistic model. These four metrics will be used throughout
this paper as closures.

2.2 Feature Learning of a Network and node2vec

The unsupervised algorithm node2vec for feature learning in networks is based on
natural language processing [4]. It treats the problem of feature learning in a net-
work as a maximum likelihood optimization problem. The function f : V → Rd

to be learned maps each node u to the d-tuple f(u) of features of u. Therefore,
f is represented as a matrix of size |V | × d. The optimization problem becomes
feasible when the technique assumes conditional independence and spatial sym-
metry. Conditional independence means that the likelihood of observing a node
does not depend on any other node’s observation. Spatial symmetry means that
two neighbor nodes have a symmetric effect over each other in the d-dimensional
feature space.

For each node u ∈ V , the expression N(u) denotes the network neighborhood
of u. This set is generated up to a fixed sampling strategy and a fixed size.
The sampling strategy is a combination of depth-first (DFS) and breadth-first
(BFS) sampling. Starting from vertex u, the former selects the nodes farthest
in a path from u, while the latter selects the ones closest to u. Based on these
two strategies, node2vec computes random walks for each node u in combination
with user-provided weights for back-edges and forward edges to build N(u).
Finally, node2vec uses deep learning networks to learn the associated function
f : V → Rd of features of G from all the network neighborhood sets N(u).

Since the goal of this work is link prediction, the function to be learned
needs to have the edges E of G as its domain. In particular, the feature func-
tion has type g : E → Rd and it is defined to obtain a d-tuple representation
g(u, v) = g(v, u) for each link (u, v) ∈ E based on the d-tuples f(u) and f(v) com-
puted by node2vec. Several binary operators can be considered for learning edge
features with this approach. For instance, piece-wise average

(
fi(u)+fi(v)

2

)
, piece-

wise multiplication (fi(u)∗fi(v)), weighted-L1 (|fi(u)−fi(v)|), and weighted-L2
|fi(u) − fi(v)|2, where fi denotes the i-th projection over f(u). The piece-wise
multiplication alternative, also known as Hadamard operator, is used in this
study for obtaining the d-dimensional edge representation in g.
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2.3 Random Forest, Gradient Boosted Trees, and XGBoost

Ensemble learning is a branch of supervised learning algorithms in which several
base estimators are trained and their predictions combined in order to improve
robustness over a single estimator. Two big groups are usually distinguished:
averaging methods and boosting methods. Random forest is an example of aver-
aging methods, while gradient boosted trees are representative for boosted meth-
ods.

In the random forest implementation of scikit-learn [19], each decision tree is
built from a bootstrap sample from the training set (i.e. sampling with replace-
ment). The node splitting process during the tree construction finds the best
split either for a random subset of features or from all input features. On the
other hand, the XGBoost library implements supervised learning models based
on gradient boosted decision forests [2]. The main difference with random forest
is that an added estimator tries to minimize the current emsemble error, instead
of being an independent predictor.

A set E′ ⊇ E is fabricated for training purposes and a dataset T of size
|E′| × d: for each e ∈ E′, the corresponding row is g(e), even if e /∈ E. The
algorithms in XGBoost are used to infer the Boolean function l : T → B so that
l(g(e)) is the supervisory signal for e ∈ E′. The labeling function l is then used
to select candidate edges in E′ \ E to add to G.

The problem of learning the optimal structure of a decision tree is known to
be NP-complete [7]. In practice, it is usual to define an objective function to be
minimized for learning l, so that it has an internal structure approximating the
optimal one. In this case, training loss and a regularization term are added for
the objective function. Training loss is usually calculated as the mean squared
error between prediction and observation. The regularization term is, intuitively,
a measure penalizing the depth of the decision tree.

3 Training with the Duplication-Divergence Model

This section presents an overview of the duplication-divergence network model [8]
and proposes an approach for using the model to predict links in protein-protein
interaction networks.

3.1 The Model

From a biological perspective, it is widely accepted that a new protein appears
as a copy of an existing one in the interactome [26]. This process is known as
duplication and is the main driving mechanism of evolution in PPI networks.
Random mutations also occur, leading to differences between the source and
duplicated proteins; thus, a certain degree of divergence is expected.

The duplication-divergence (DD) model was first proposed by Kim et al.
in [9] as a network model, but the variant used in this study can be attributed
to Ispolatov et al [8]. The model takes as input a given (undirected) connected
graph G0 and a probability δ. For any given time t ≥ 0, the graph Gt evolves to
the graph Gt+1 as follows:
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Duplication. A node u from the graph Gt is chosen at random to create v,
which is connected to all neighbors of u, so that N(u) = N(v).

Divergence. Each of the edges from v to N(u) is deleted with probability δ. If
at least one edge remains, the replica is preserved; otherwise, the attempt is
considered futile and the network does not change.

The criteria of failed attempts is biologically relevant, since it assures that
the resulting graph is connected. Leaving nodes with no edges produces discon-
nected nodes whose survival during the evolution process is questionable. Critical
biological pathways, such as degradation, are run by housekeeping proteins that
are highly connected and in principle have links to all proteins in a species [8].

3.2 Parameter Estimation

It is key to define the removal probability δ to use the DD model. As addressed by
several authors, the DD model preserves the most relevant topological properties
of the PPI networks: average degree, power-law exponent, average clustering
coefficient, average path length, and observed bipartite cliques [8,18,23]. Given
that the number of nodes is already a direct parameter of the DD model, the
number of edges is calibrated only with the removal probability δ.

Let Gp = (Vp, Ep) be the PPI network to be predicted and Gv = (Vv, Ev) the
target PPI network. The idea is to generate a synthetic network Gs = (Vs, Es)
by finding the parameter δ so that Gs := DD(|Vp|, δ) has a similar amount of
edges (i.e., |Ev| ≈ |Es|). Due to the intrinsic stochastic nature of the model, the
considered number of edges is the average of K models generated for the same
parameters (i.e., |Es|).

Once parameter δ is estimated, a number of repetitions R is defined and
then R synthetic networks are created, having in mind a maximum admissible
deviation factor ∆E from the expected number of edges |Ev|:

(1 − ∆E)|Ev| ≤ |Es| ≤ (1 + ∆E)|Ev|.

On average, the number of edges generated by the DD model has a monotonic
behavior and is inversely proportional to the removal probability δ. However,
variance among repetitions with the same parameters is considerable, so that it
is impractical to find δ with a precision lower than 0.001.

3.3 The Approach

After using the DD model with the calibrated parameters to obtain the R net-
works Gi, 0 ≤ i < R, the following procedure is carried out for each of them.
Keep in mind that this description is intended to be general. Details about the
application of this approach on the human interactome are given in Section 4.

1. From the complete synthetic network Gi some edge features are extracted,
deterministically (e.g., L3) or stochastically (e.g., node2vec embeddings).
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2. A binary classification model M (i) is trained with a subset of those features,
using all existing edges as positive evidence (Class 1) and a random subset of
non-existing edges as negative evidence (Class 0). To reduce bias, the number
of edges of each class is the same (balanced dataset).

3. The same edge features computed for Gi are now computed for the PPI
network to be predicted Gp.

4. The model M (i) is used on all the unlabeled edges of the PPI network Gp;
that is, on (V × V ) \Gp(E), using the computed edge features.

5. The predicted edges are ranked in descending order by their probability of
existence according to the model and the top B are selected.

6. The top B predictions are compared with the target PPI network Gv and the
precision is then computed.

Figure 1 shows a visual representation of the approach. Note that for the real
PPI network, node features are computed independent to the synthetic networks.
The hyperdimensional representation of the edges on the real PPI network is used
to feed the classification models trained on the synthetic networks.

4 Prediction of Interactions on the Human Interactome

This section presents the approach for predicting PPIs on the human interactome
using synthetic networks. The goal of this case study is to exhibit the proposed
approach, having in mind the predictive limitations due to the incompleteness
of the current human interactome [5,27].

4.1 Data

Two versions of the human interactome are used: the interactome used for the
prediction Gp corresponds to HI-union and is available at the website of the
Human Reference Protein Interactome Mapping Project [13]. It consists of 9,094
proteins and 64,006 interactions. The second interactome Gv, which is used to
validate the predicted interactions, corresponds to a dataset published by Gysi
et al. consisting of 18,505 proteins and 327,924 interactions [5]. It is an assembly
of 21 public databases compiling experimentally derived PPI data.

It is worth noting that each interactome has a different identifier type: HI-
union (Gp) uses Ensembl GeneID and HI-2021 (Gv) uses EntrezID. Conversion
of Gv from EntrezID to Ensembl GeneID was done using BioDBnet web ser-
vices [16]. Not all proteins could be translated, so the resulting network after
translation had 18,173 proteins and 321,360 interactions.

4.2 Data Pre-processing

Since prediction depends almost entirely on the PPI network being connected,
the greatest connected component from Gp was used for this study. This leaves
Gp with |Vp| = 8, 986 proteins connected by |Ep| = 63, 203 interactions. On the
other hand, the greatest connected component in Gv has 321,360 edges.
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Fig. 1. Diagram of the proposed approach for PPI prediction using synthetic networks.

4.3 DD Model Calibration

The calibration process was carried out by a binary search of the parameter
δ. The goal was a network with the expected amount of edges of the greatest
connected component in Gv. The maximum admissible deviation factor was set
to ∆E = 0.1 and the number of repetitions considered to average the number of
edges was set to K = 100. The calibrated value is δ = 0.263 and its computation
took around 3 minutes.

4.4 Feature Conformations

The feature conformations used in this study are:

ML. After obtaining node2vec vector representations of the nodes, the
Hadamard operator is used to obtain the edge embeddings. In total, 128
dimensions were retrieved with an unbiased search (p = q = 1 in node2vec)
and default parameters. The implementation used in this study can be found
in the karateclub library [21]. This model type is addressed as MML,·.
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L3. It uses the features from ML and includes the L3 score. This model type is
addressed as ML3,·.

A3. It includes the features from ML, as well as the raw count of paths of length
3 (A3 = (AG)3). This model type is addressed as MA3,·.

A2. It includes ML features and the raw count of paths of length 2 (A2 =
(AG)2). This model type is addressed as MA2,·.

CH2. This conformation uses the features from ML and includes the score for
the local communities of length 3 (CH2 −L3). This model type is addressed
as MCH2,·.

CLO. It includes only the deterministic features: L3, A3, A2 and CH2 − L3.
This model type is addressed as MCLO,·.

ALL. This conformation uses all the features from ML and CLO. This model
type is addressed as MALL,·.

4.5 Classification Models

The classification models used in this study are XGBClassifier from the XGBoost
library [2] and Random Forest Classifier from scikit-learn library [19], further
addressed here as M·,XGB and M·,RF, respectively.

4.6 Using the Proposed Approach

The prediction task consists of several steps, as mentioned in Section 3.3. A total
of R = 10 DD model networks were generated using the calibrated parameters
for a more robust assessment of PPI interactions. The creation of the synthetic
networks took around 40 seconds. In total, 140 models M (i)

F,C were trained:
R = 10 repetitions for each of the 7 feature conformations (F ) and each of the
classification models (C). After that, each model was used to predict the unla-
beled edges of Gp and the top B = 10, 000 unlabeled edges with the highest
existence probability were selected. Finally, the evaluation metrics were com-
puted. Each repetition of all models took around 9 hours of computing time.

The prediction results are presented in Table 1 as a 10-fold average precision
for each of the 14 combinations of classification model and feature conformation.
Precision values for the deterministic prediction are presented in the last column.
Note that predictions overall present a low precision. The highest precision is
achieved by the deterministic approach using CH2-L3. Out of the methods using
machine learning predictors, the random forests model trained to consider only
the information from the 4 closures (MCLO,RF) achieves the highest precision,
which is comparable with the lowest precision from the deterministic subset of
predictions. The set of features to give the lowest average prediction by using
the XGBoost predictor is the combination of the 4 closure-based metrics. For
the random forest classifier, combining all closure features and the embedding
results in the lowest precision model.
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Table 1. Precision results for top-10,000 edges for the combination of the 2 models
and 7 feature conformations (average over 10 models trained on synthetic networks),
as well as the deterministic prediction using each metric

Prediction: Stochastic Deterministic
Trained model: XGBoost (%) Random forest (%) None (%)
L3 0.228 0.220 1.090
A3 0.230 0.230 0.450
A2 0.196 0.216 1.210
CH2 0.302 0.142 1.380
ML 0.223 0.214 –
ALL 0.227 0.106 –
CLO 0.115 0.481 –

5 Related Work and Concluding Remarks

Important work on modeling networks governed by duplication of nodes has been
done under several approaches. Some authors find that the DD model is one of
the models that best fits the distribution on some PPI datasets [24] and that
it preserves the observed bipartite cliques [23]. Chung et al. analytically derive
relationships associating the power-law distribution exponent β and the DD
parameters using combinatorial probabilistic methods [3]. Their work involves
both full and partial duplication of a node, and conclude that partial duplication
(i.e., retaining only a fraction of the duplicated edges) generates networks con-
sistent with biological networks. They also show that the power-law exponent for
large graphs does not depend on the starting graph, but on the growth process
itself.

Other important advances in the DD model are made by [8,9,18]. Kim et
al. work on a DD model which –besides gene duplication– allows nodes to con-
nect to the duplicated ones with a probability r

t (process called mutation). A
main finding is that in a mutation-dominated growth, disconnected components
merge into larger ones (known as percolation), while in a duplication-dominated
environment the process is not self-averaging and each outcome is itself sin-
gular [9]. Pastor-Satorras et al. find the characteristic degree distributions for
such DD models, and compare the topological properties of the yeast PPI with
a calibrated synthetic network in terms of average degree, power-law exponent,
average clustering coefficient, and average path length [18]. Ispolatov et al. assess
a model as presented in this paper, in which a duplicated node that disconnects
from the network is discarded and the network does not change [8]. They ana-
lyze the properties of total duplication models, as well as highly divergent ones
where the resulting networks are trees because only one edge is added to each
duplicated node. They find a range of values for the DD parameter that gen-
erates a self-averaging network. To the best of the authors’ knowledge, no use
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of synthetic networks with the DD network model has found a way for edge
prediction in PPIs.

Prediction of PPIs is a highly active topic in bioinformatics. Several reviews
make the effort of compiling different techniques and methods available [1,22,31].
Most techniques are based on one or several of the following approaches: to
exploit the existing network connectivity [10,29], to leverage from the amino
acid sequences [28], to use functional annotations [6,33], and to apply machine
learning techniques to extract features or predict PPIs [30].

Two complementary approaches support this work. First, the work by Kovacs
et al. elucidates the connectivity-based mechanics of PPIs by computing paths
of specific distances, being paths of length 2 and 3 the most relevant [10]. Fur-
thermore, they define the degree-normalized count of paths of length 3 (L3),
which performs consistently to predict novel PPIs on several organisms in a
deterministic way. On the other hand, Xiao and Deng leverage the usage of deep
learning models for the extraction of embeddings [29]. Based on that high-degree
neighborhood information, they design a model for predicting PPIs using graph
convolutional networks and consider CH2-L3 as an important deterministic app-
roach to PPI prediction. These ideas are merged with the DD model for creating
synthetic networks that mimic the structure of real PPI networks. The reason
to use synthetic networks is that its connectivity is final. That is, an edge either
exist or not, whereas real PPI networks mainly have certainty on the observed
edges because the rest of the edges are considered unlabeled. On the other hand,
decision tree classification methods usually have the best performance when pre-
dicting PPIs compared to other machine learning methods [22]. However, great
care should be taken because they are prone to overfitting and sensitive to noise
and correlated features given the nature of PPIs.

The results in this paper suggest that the deterministic approaches perform
better for predicting PPIs. In general, metrics based on paths of length 3 (A3, L3,
and CH2-L3) seem to perform better than the paths of length 2 (A2), which is
consistent with [10]. Two of the most recent human PPI networks found in litera-
ture were used for the prediction (Gp) and performance evaluation (Gv), compris-
ing 9.7% and 49.4% of the expected size of the human interactome (∼ 650, 000
edges), respectively [27]. These datasets, in comparison with the HI-II-14 ver-
sion used in other studies, may show a better picture on the real PPI prediction
performance for any given model. Although Gv contains many interactions more
than Gp, no total assessment can be done on the edges which are reported as
non-existing, because some of those interactions might actually occur (but have
not been documented). The main contribution is the proposed approach itself;
to the best of the authors’ knowledge, no PPI prediction task has attempted the
use of synthetic networks. This seems a tractable approach from a resource- and
computational-wise perspective.

As future work, the exploration of other tree-based classification models may
show a more significant precision result. Namely, ensemble alternatives combin-
ing different types of models or models with different parameters may overcome
the overfitting problems of random forest classifiers, as well as their sensitivity
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to noise. Furthermore, the exploration of datasets for other organisms might
elucidate hidden biological mechanisms related to relevant closures or feature
combinations.
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