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Abstract. Gene co-expression networks (GCNs) specify binary rela-
tionships between genes and are of biological interest because signifi-
cant network relationships suggest that two co-expressed genes rise and
fall together across different cellular conditions. GCNs are built by (i)
calculating a co-expression measure between each pair of genes and (ii)
selecting a significance threshold to remove spurious relationships among
genes. This paper introduces a threshold criterion based on the under-
lying topology of the network. More specifically, the criterion considers
both the rate at which isolated nodes are added to the network and
the density of its components when the threshold varies. In addition to
Pearson’s correlation measure, the biweight midcorrelation, the distance
correlation, and the maximal information coefficient are used to build
different GCNs from the same data and showcase the advantages of the
proposed approach. Finally, a case study presents a comparison of the
predictive performance of the different networks when trying to predict
gene functional annotations using hierarchical multi-label classification.

Keywords: Gene co-expression network · Hierarchical multi-label
classification · Gene function prediction · Network density · Correlation
metrics.

1 Introduction

A gene co-expression network (GCN) of an organism specifies binary relation-
ships between genes that are likely controlled by the same transcriptional regu-
latory program, are functionally related, or are members of the same pathway or
protein complex. They are of biological interest because significant co-expression
relationships show a similar expression pattern across different experimental con-
ditions, meaning that two co-expressed genes rise and fall together across differ-
ent samples. GCNs are usually built in a two-step approach: first, by calculating
a co-expression measure between each pair of genes, and second, by selecting a
significance threshold to remove spurious relationships between genes. In prac-
tice, a correlation metric between any two genes is unlikely to be zero (even if
their expression behavior is completely independent), thus resulting in a GCN
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that is a complete weighted graph with some spurious edges. However, dealing
with a dense network can render its computational analysis intractable. The
challenge is thus to use a correlation metric that identifies significant relation-
ships and makes sense from a biological perspective, while making the resulting
GCN accessible and tractable for computational analysis.

This paper proposes a new hard-threshold criterion for discarding relation-
ships from gene correlation networks. The main novelty of the criterion is that
it considers the underlying topology of the network, more specifically, the rate
at which isolated nodes are connected to the network and the density of the
network components as the threshold varies. Unlike other authors that define
several threshold ranges based on network density minima and the number of
edges and nodes [1,19], the proposed approach selects between two specific values
of the selected topological properties of the network.

The Pearson and Spearman correlation measures are commonly used for
finding correlations among genes [18]. However, these correlation coefficients are
designed to identify linear or monotonic relationships, respectively, and must
therefore be interpreted carefully. Moreover, Spearman correlation has been
found to achieve a lower accuracy than Pearson when analyzing continuous
data [6]. In this paper, different correlation metrics are evaluated to showcase the
proposed approach. In particular, the biweight midcorrelation (BICOR) [8], the
distance correlation (DCORR), and the maximal information coefficient (MIC)
are used to build and compare different GCNs from the same data.

A case study is presented, which analyses the performance of hierarchical
multi-label classification (HMC) for predicting gene functions based on differ-
ent generated GCNs. The analysis focuses on the biological processes of the
Gene Ontology (GO) hierarchy [5]. Functional information is imported from
the DAVID Bioinformatics Resources [7]. The experimental results suggest that,
although performance of the functional prediction for all metrics is similar, an
improvement greater than the variance can be observed for large hierarchies
using BICOR to construct the network. Ultimately, these results highlight the
importance of characterizing the relationships among genes in elucidating bio-
logical functionality of organisms and suggest how the proposed thresholding
criterion can be extended to other biological contexts.

The remainder of the paper is organized as follows. Section 2 presents pre-
liminary concepts. Section 3 presents the proposed threshold criterion and shows
its impact on building a gene co-expression network from a dataset of rice.
Section 4 presents a case study in gene function prediction based on a hier-
archical multi-label classification model and compares the performance of the
resulting co-expression networks. Section 5 summarizes related work and draws
some conclusions.
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2 Preliminaries

2.1 Correlation Metrics

Correlation metrics are used for measuring the degree of association (i.e., linear
relationship) between two random variables. The most common correlation met-
ric is perhaps the Pearson correlation coefficient (PCC). It is computed as the
covariance ratio of two variables and the product of their standard deviations.
Given two variables X and Y , the PCC is defined as

PCC(X,Y ) =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

,

where n is the number of points for each variable, xi refers to the i-th data point,
and x̄ is the sample mean of X. The definition is analogous for yi and ȳ.

The biweight midcorrelation (BICOR), an alternative to PCC, is a measure
of similarity between samples that relies on the median rather than the mean
for sample centrality [8]. For two random variables X and Y , BICOR is defined
as

BICOR(X,Y ) =
n∑

i=1

x̃iỹi,

where x̃i and ỹi are normalized versions of the original values xi and yi, which
in turn, are defined as

x̃i =
(xi − med(x))w(x)

i√∑n
j=1[(xj − med(x))w(x)

j ]2
,

where med(x) corresponds to the median of x and w(x)
i is a weight assigned

to each value xi based on its deviation from the median. The definition of ỹi
and w(y)

i are analogous (more details on computing these weights can be found
in [15]).

Distance correlation (DCORR) is a correlation metric that provides a bet-
ter performance than PCC regarding complex relationships and outlier effect.
In contrast to PCC, DCORR can measure non-linear relationships and is less
affected by outliers [6]. Furthermore, the DCORR between a pair of variables is
equal to zero if and only if they are independent. The metric does not assume that
data is normally distributed and results from the distance covariance between
X and Y , DCov2. In particular, the distance covariance is defined as

DCov2(X,Y ) =
1
n2

n∑

i,j=1

[AijBij ],

where Aij and Bij are defined as Aij = aij − āi· − ā·j + ā·· and Bij = bij − b̄i· −
b̄·j + b̄··, given that aij = ‖xi −xj‖ and bij = ‖yi −yj‖ are Euclidian norms. The
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DCORR between X and Y is defined as

DCORR(X,Y ) =
DCov2(X,Y )√

DCov2(X,X)DCov2(Y, Y )
.

Other type of metrics that can be used to assess correlation have their origins
in information theory. They are based on the concept of mutual information
of two variables to measure mutual dependence between them. The maximal
information coefficient (MIC) quantifies the degree in which a discrete variable
can give information about another variable. It is based on computing a grid
and observing how well the grid encapsulates the relationship between the two
variables [12]. MIC has been applied in the context of gene co-expression network
analysis. It has been shown to outperform other models (such as WGCNA [8])
on finding non-linear relationships [11].

2.2 Gene Co-expression Networks

Gene co-expression networks are represented as undirected graphs where each
node corresponds to a gene and a pair of nodes is connected with an edge if
there exists a significant co-expression relationship between them.

Definition 1. Let V be a set of genes, E a set of edges that connect pairs of
genes, and w : E → R≥0 a weight function. A (weighted) gene co-expression
network is a weighted graph G = (V,E,w).

Gene co-expression networks are of biological interest since co-expressed
genes usually belong to the same regulatory pathway or protein complex and can
elucidate biological functionality for unlabeled genes [8]. High-throughput gene
expression profiling technologies such as microarrays or RNA-Seq yield datasets
that can be used for generating co-expression networks [13]. If the expression
profiles for several genes under different experimental conditions are measured,
then the network can be constructed by connecting with an edge those pairs of
genes showing similarity in their expression patterns.

For the purpose of this paper, a hierarchical multi-label classification model
is used to fairly evaluate the performance of the different correlation metrics and
their resulting GCNs in predicting gene functional annotations.

2.3 Hierarchical Classification

Classification problems may be defined using binary, multi-class, or multi-label
prediction tasks, where predictions consist of a single class, a single class from
a set of mutually exclusive classes, and a subset of classes, respectively. Hierar-
chical multi-label classification (HMC) addresses the task of structured output
prediction where the classes are organized into a hierarchy and an instance may
belong to multiple classes. In many problems, such as gene function prediction,
classes inherently satisfy these conditions [9]. The problem of predicting gene
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functions refers to the task of identifying associations between genes and func-
tions based on biological information, such as gene co-expression networks. This
problem is usually addressed using HMC.

Moreover, it is often the case in HMC datasets that individual classes have
few positive instances. In gene function prediction, typically only a few genes are
associated to specific functions. This implies that for most classes, the number
of negative instances by far exceeds the number of positive instances. Hence,
the focus is on recognizing the positive instances, i.e., on identifying the associ-
ations between genes and functions. For this reason, the area under the average
precision-recall (PR) curve introduced by [16] is used for evaluation, denoted
as AU(PRC). This metric transforms the multi-label problem into a binary one
by computing the precision and recall for all functions A′ together. This corre-
sponds to micro-averaging the precision and recall. Multiple thresholds are used
to create a PR curve, where each point represents the precision and recall for a
give threshold that can be computed as:

Prec =
∑

i TPi∑
i TPi +

∑
i FPi

and Rec =
∑

i TPi∑
i TPi +

∑
i FNi

.

3 Co-expression Network Construction

This section introduces the method for constructing co-expression networks
based on the expression profiles of genes.

According to [14], two possible approaches are feasible to filter spurious edges,
namely, hard- and soft-thresholding. In the former, a threshold value that ‘cuts’
the network is defined to discard the edges whose weight falls below. In the
latter, a function is designed to map each correlation value to an edge weight,
suppressing the influence of weak edges and enhancing the influence of strong
ones. Here, a hard-thresholding approach is defined based on the observed co-
expression values, which considers the topology of the network.

3.1 Relationship between Threshold and Network Density

Defining the threshold to remove spurious relationships is not a trivial task [4]:
setting the threshold too high results in many disconnected small network com-
ponents; setting it too low introduces noise in the topology of the network. Fur-
thermore, it is impossible to define a universal correlation coefficient threshold
because underlying biochemical processes change from one organism to another,
among different tissues of the same organism, or even among different experi-
mental designs [18].

Some network properties are relevant for analyzing the network growth and
should be introduced for further discussions. The average degree of a network
represents the average number of connections of any node in a network. A nor-
malized version of this metric represents a measure of network density (which
ranges from 0 to 1). Note that a network with no edges has density of 0, while
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a fully connected clique has a density of 1. Since a network may be composed
of several connected components, consider the measure of average density ρ̄ as
the average density of its connected components (an isolated node is a compo-
nent with ρ̄ = 1; similarly, a network consisting of cliques also has ρ̄ = 1). The
work in [1,17,19] provides an important insight on how the network behaves
with respect to changes in the threshold. In the proposed method, the number
of nodes with at least 1 edge, the number of edges, and the average density of
the network are relevant properties.

Consider a threshold that is just a fraction higher than the highest co-
expression value across the entire network. At this starting point, the network
will consist only of isolated nodes and therefore ρ̄ = 1. As the threshold starts
to decrease, some edges are sparsely added to the network and, up to a certain
point, tree-like structures start to emerge. Trees are graphs with low density and
therefore the average density of the network decreases. As the threshold contin-
ues to decrease, more connections are expected to appear between nodes already
connected than between disconnected nodes. Further decrease in the threshold
increases the average network density until all edges are covered and the network
becomes a clique.
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Fig. 1. Example of the behavior of the number of added nodes and average density for
PCC and BICOR.

Figure 1 depicts the aforementioned behavior by setting different thresholds
to build a co-expression network for rice. The co-expression values are computed
using PCC and BICOR (only nodes with a least one edge are considered). In
this case, the behavior does not depend on the correlation metric; nevertheless,
the dominance of tree-like structures or the densification process depends com-
pletely on the underlying correlation values and the intrinsic biological processes
involved.
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3.2 Threshold Inference

Note that there exists a threshold for which the average network density is min-
imal (this is, mainly, because with a high threshold the average network density
is maximal and equal to 1, and with a low one the resulting network is a clique).
This observation is key because it means a transition from a behavior dominated
by tree-like structures to one dominated by densification of the existing compo-
nents. From a biological perspective, at this point, the most intrinsically relevant
clusters should have been already established.

Additionally, an important aspect on the network growth is how fast isolated
nodes become connected to other components, which contributes to the emer-
gence of the tree-like structures. If the rate at which nodes are being added is
growing, network growth is yet unstable and clusters are still forming. In con-
trast, if the rate of node aggregation is decreasing, then weaker connections are
appearing among the existing clusters. In this regard, the turning point of node
aggregation is also an important clue to select the threshold, since the most
relevant clusters are already formed.

The process of inferring the threshold assumes as input an expression matrix
E containing e expression values for n genes and a correlation metric m. The
expression profile for each gene consists of e experimental levels of expression
under certain conditions (i.e., |E| = n × e). The correlation metric m is used to
compute the co-expression matrix C containing the pairwise correlation values
between n genes (i.e., |C| = n× n). The proposed definition of the threshold tC
is given by

tC = min (argmax(|∆VI,C|), argmin(ρ̄C)) ,

where ∆VI,C is the change in the number of isolated nodes as the threshold on
the correlation values in C moves down and ρ̄C is the average network density.

3.3 Co-expression in Rice

This sections evaluates the selected metrics for computing the co-expression
between genes and describes the resulting networks after applying the proposed
approach. In each experiment, a discretization of the range of each metric in
steps of 0.01 is applied, as in [1].

Data. Expression values for 23,374 genes of rice (Oryza sativa Japonica) across
2,678 accessions are retrieved from the NCBI Gene Expression Omnibus (GEO)
Datasets [2]. Expression values range from 0.009 up to 280,584, with an average
expression value of 1,252. Additionally, the original gene identifiers (AffyID) are
converted to Entrez-IDs using the DAVID bioinformatics resources [7].

Analysis. Table 1 presents the main properties of the resulting networks after
computing the correlation of rice data using each metric and applying the pro-
posed method for finding the threshold. The column labeled Nodes refers to the
number of nodes with at least 1 edge.
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Table 1. Properties of the resulting networks after applying the proposed threshold
method.

Network Nodes Edges Components Avg. degree Density

PCC 11, 241 1, 195, 905 473 212.78 0.0189

BICOR 7, 344 382, 202 586 104.09 0.0142

DCORR 13, 069 2, 184, 554 12 334.31 0.0256

MIC 14, 233 5, 790, 949 255 813.74 0.0572

It can be observed that the correlation metric applied to the expression pro-
files highly influences the resulting network topology, hereby represented with
the number of non-isolated nodes, number of edges, number of connected com-
ponents, average degree, and density. Also note that the amount of nodes and
edges greatly changes from metric to metric. Although DCORR and MIC differ
on the number of nodes by around one thousand, the number of edges and the
network density of MIC increases by more than twice. In contrast, BICOR has
around half of the nodes as DCORR, but less than a fifth of the edges. Finally,
note that there exists a great variation in the number of connected components:
DCORR is not as dense as MIC, but has less components, connected in a sparse
manner.

4 Case Study: Gene Function Prediction

This section presents a comparison of the predictive performance of the generated
networks on the gene function prediction problem using HMC. This case study is
focused on the biological processes of the Gene Ontology (GO) hierarchy [5]. The
functional information is imported from DAVID Bioinformatics Resources [7]. It
comprises 3,531 biological processes and 6,367 hierarchical relations, which are
part of the GO hierarchy, and a total of 289,407 associations between genes and
functions.

To fairly compare the generated networks, it is necessary to use the same
functions and genes for all co-expression networks. For that purpose, (i) the
greatest connected component (GCC) of each network is computed, (ii) the
common genes between the GCCs of all networks are selected, and (iii) a subset
of GO sub-hierarchies is selected such that at least 10 genes are associated to
each biological process. As a result, 10 sub-hierarchies of biological processes are
used, represented by their root. Table 2 depicts the sub-hierarchies sorted by
their number of biological processes.

The intersection of all GCCs is computed and extracted, so that the same
set of genes is used to train the HMC model for each dataset. The HMC models
are built based on random forests of decision trees, where all functions of the
hierarchy are considered at once. Additionally, k-fold cross validation is used
to avoid overfitting in training (the number of folds is k = 5). The parameter
values used for random forest classifiers are: 200 estimators (n estimators) and
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Table 2. Sub-hierarchies of biological processes, represented by their root. Each sub-
hierarchy is considered an independent dataset.

Root Description Functions

GO:0002376 Immune system process 9

GO:0044419 Biological process involved in interspecies interaction between organisms 13

GO:0032501 Multicellular organismal process 18

GO:0022414 Reproductive process 24

GO:0032502 Developmental process 53

GO:0051179 Localization 86

GO:0050896 Response to stimulus 102

GO:0065007 Biological regulation 184

GO:0008152 Metabolic process 399

GO:0009987 Cellular process 517
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Fig. 2. Prediction performance for the gene function prediction problem on rice, mea-
sured with AU(PRC), for the networks generated with all correlation metrics, namely,
PCC, BICOR, DCORR and MIC.

minimum number of samples of 5 (min samples split). Note that one model is
build for each network and dataset.

Figure 2 shows the prediction performance measured with AU(PRC) for the
networks generated with all correlation metrics, namely, PCC, BICOR, DCORR,
and MIC. It illustrates the variance of the performance for 50 runs of the mod-
els. Although the performance for all metrics is similar, MIC outperforms the
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other metrics (considering the variance) in the smaller sub-hierarchies, with the
exception of GO:0044419. In a similar way, BICOR outperforms the other met-
rics for the larger hierarchies, i.e, GO:0065007, GO:0008152 and GO:0009987.
The remaining hierarchies have inconclusive results.

5 Related Work and Concluding Remarks

A significant effort has been put in comparing different correlation metrics on
biological datasets, considering that PCC is used in the majority of co-expression
network analysis [18]. BICOR itself appears as part of the WGCNA package of R
for gene co-expression analysis and has proved to be robust to outliers. The work
in [15] compared BICOR and some mutual information estimators like MIC for
Gene Ontology (GO) enrichment analysis. The results suggest that MIC tends
to overfit the data from brain cancer, blood lymphocyte, yeast, mouse adipose
tissue, and mouse muscle. In fact, the Topological Overlap Matrix method, based
on BICOR, dominates 7 of 8 datasets in terms of GO enrichment [10]. Similar to
the results in [15], our own findings suggest that the benefits of applying BICOR
instead of PCC or Spearman coefficient are marginal.

The recent work in [6] compared the efficacy of using DCORR, PCC, MIC,
and Spearman as part of the WGCNA framework for gene co-expression net-
work analysis. Four datasets of expression samples including macrophage, liver,
cervical cancer, and pancreatic cancer were used to compared the performance
of these metrics on GO enrichment of biological processes. The results show
that DCORR is stable for highly correlated pairs of genes as the size of the
datasets grows, while PCC only presents a comparable, yet decaying stability in
the macrophage dataset. Furthermore, when analyzing the module preservation
of GO clusters, DCORR has higher one-to-one correspondence.

Hard- and soft-thresholding procedures have been proposed in the litera-
ture [14,18]. A notorious soft-thresholding approach corresponds to WGCNA,
which raises the computed PCC to a power β ≥ 1 to ensure a scale-free behav-
ior [8]. This procedure enhances high correlations at the expense of low corre-
lations. Hard-thresholding approaches define a significance value and keep the
edges with a correlation value above the threshold. The work in [3] proposed
an approach that uses permutation-based significance tests: by independently
permuting the components of a gene expression profile, they estimate a p-value
for each observed correlation. The authors of [1,19] selected the threshold based
on the behavior of the number of edges, number of nodes, and network density,
resulting in a range in which the threshold can be selected. The work in [17]
extended [1] by adding another consideration: once a range is defined upon the
previous criteria, a clustering analysis is carried out to verify the cluster sta-
bility and choose the most appropriate end of the range to select as threshold.
Unlike [17], the proposed method is based on the growing mechanisms and the
topology of the underlying network. Understanding that the appearance of bio-
logically significant modules is closely related to how tree-like structures appear
and how the existing components densify, gives an insight on an emergent behav-
ior among genes.
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The results in this paper suggest that it is possible (and in some cases con-
venient) to use robust correlation metrics other than Pearson for obtaining gene
co-expression networks. Also, a characterization of the growing mechanisms of
co-expression networks in terms of network density and rate of aggregation of
isolated nodes has been presented. Although the differences in the performance
among some metrics are marginal, the use of BICOR for gene function prediction
yields, in terms of three evaluation metrics, promising results for larger GO sub-
hierarchies (consisting of more than 180 functions). Similarly, MIC can be used
for enhancing gene function prediction performance when the size of the GO sub-
hierarchy is small (consisting of less than 90 functions). The hard-thresholding
identification was used to build co-expression networks and was used to showcase
a solution to the gene function prediction problem for Oryza sativa Japonica, a
variety of rice.

As future work, the characterization of other weighted networks needs to be
developed and the elucidation of similar network growing mechanisms in other
contexts, as well as the exploration of other correlation metrics (e.g., information-
based) for generating co-expression networks, needs to be pursued. Furthermore,
this study applies a fixed range discretization with steps of 0.01 to compute
the evolution of network density and isolated node aggregation, but alternative
discretization approaches need to be assessed.
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Multiescala In-silico de Cultivos Agŕıcolas Sostenibles (Infraestructura y Validación en
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