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Abstract. Gene annotation addresses the problem of predicting unknown func-
tions that are associated to the genes of a specific organism (e.g., biological pro-
cesses). Despite recent advances, the cost and time demanded by annotation pro-
cedures that rely largely on in vivo biological experiments remain prohibitively
high. This paper presents an in silico approach to the annotation of genes that fol-
lows a network-based representation, and combines techniques from multivariate
statistics (spectral clustering) and machine learning (gradient boosting). Spectral
clustering is used to enrich the gene co-expression network (GCN) with currently
known gene annotations. Gradient boosting is trained on features of the GCN to
build an estimator of the probability that a gene is involved in a given biological
process. The proposed approach is applied to a case study on Zea mays, one of the
world’s most dominant and productive crop. Broadly speaking, the main results
illustrate how computational experimentation narrows down the time and costs in
efforts to annotate the functions of genes. More specifically, the results highlight
the importance of network science, multivariate statistics, and machine learning
techniques in reducing types I and II prediction errors.

1 Introduction

An important pillar for gaining insight into how genomes serve as blueprints for life is
understanding the association of genes with as yet unknown functions [25,29]. Devel-
oping treatments that use genomic information about organisms to treat specific con-
ditions, including—for example—approaches that enhance tolerance levels to environ-
mental stresses, has motivated a significant body of research [28]. Nonetheless, the cost
and time demanded by in vivo biological experimentation to annotate large sets of genes
remains prohibitively high [5,32]. Hybrid approaches that integrate existing knowledge
of gene-function associations and in silico methods have been introduced to overcome
this limitation [6,8,15,24]. The ability to cope with the extreme combinatorial nature
of gene annotation enables computational experimentation to narrow down the effort,
time, and costs.

A number of studies have shown that the representation and analysis of gene co-
expression networks (GCNs) are a useful framework for guiding in silico annotation
of genes [20,27]. The crux of GCN-based analysis is that it exploits the topology of
the network and offers a rich source of new information for predicting gene-function
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associations [26]. In practice, such approaches remain valid as long as the data for gene-
function associations is relatively complete and the underlying co-expression network
is tractable. Therefore, unlocking the full potential of network-based gene annotation
demands efficient approaches that are scalable to long datasets.

Main Contribution. This paper presents a novel approach for in silico annotation of
genes. It follows a network-based approximation that uses clustering and machine learn-
ing for building a predictor that assigns functions to genes. The role of clustering is to
enrich the available information for gene-function associations by creating new features
that are later used for supervised learning. More precisely, new features are built by
taking into account clusters that seem relevant to the specific biological function under
scrutiny. These new features are filtered based on the impact that is made on prediction,
before a machine learning algorithm is used to build the predictor. The proposed app-
roach illustrates how the performance of gene annotation is improved based on the new
information obtained from the clustering of the GCN.

The approach is applied to a case study on Zea mays, the world’s most dominant
and productive crop. Zea mays is used for a variety of purposes, including animal feed
and derivatives for human consumption, and ethanol [31]. The co-expression informa-
tion used in the case study is borrowed from the ATTED-II database [18]. The resulting
GCN, modeled as a weighted graph, comprises 26,131 vertices (genes) and 44,621,533
edges (binary co-expression gene relations). The functional information (known gene-
function associations) is taken from AmiGO [2]; it contains annotations of biological
processes, i.e., pathways to which a gene contributes. A total of 5,361 genes are associ-
ated to 3,285 functions. Two benchmarks are introduced and used to contrast the results
of the approach. The comparison highlights the importance of multivariate statistics and
machine learning techniques in reducing type I (i.e., false positives) and type II (i.e.,
false negatives) prediction errors. Ultimately, this case study provides experimental (in
silico) evidence that the proposed approach is a viable and promising approximation to
gene function prediction.

Related Work. The authors in [31] predict functions of maize proteins using graph
convolutional networks. In particular, amino acid sequence of proteins and the Gene
Ontology (GO) hierarchy are used to predict functions of proteins with a deep graph
convolutional network model (DeepGOA). The results show that DeepGOA integrates
amino acid data and the GO structure to accurately annotate proteins. The work in [7]
aims to predict the phenotypes and functions associated to maize genes using (i) hier-
archical clustering based on datasets of transcriptome (set of molecules produced in
transcription) and metabolome (set of metabolites found within an organism); and (ii)
GO enrichment analyses. The results show that profiling individual plants is a promising
experimental design for narrowing down the lab-field gap. Finally, a prediction of pro-
tein functions for Zea mays is presented in [17]. The approach, called PiZeam, is built
using a method of interacting orthologs (genes are said to be orthologs if they evolved
from a common ancestor). PiZeam demonstrates that the protein functions of maize can
be predicted based on protein sequence data of other organisms because orthologs tend
to retain the same function [10]).

Outline. The remainder of the paper is organized as follows. Section 2 gathers some
preliminaries. The proposed approach is presented in Sect. 3. Section 4 presents a case
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study for the Zea mays species. Finally, Sect. 5 draws some concluding remarks and
future research directions.

2 Preliminaries

This section presents preliminaries on gene co-expression networks, gene function pre-
diction, spectral clustering, and the SHAP technique.

2.1 Gene Co-expression Network

A gene co-expression network (GCN) is represented as an undirected graph where each
vertex represents a gene and each edge the level of co-expression between two genes.

Definition 1. Let V be a set of genes, E a set of edges that connect pairs of genes, and
w : E → R≥0 a weight function. A (weighted) gene co-expression network is a weighted
graph G = (V, E,w).

The set of genes V in a co-expression network is particular to the genome under
study. The correlation of expression profiles between each pair of genes is measured,
commonly, with the help of the Pearson correlation coefficient. Every pair of genes is
assigned and ranked according to a relationship measure, and a threshold is used as a
cut-off value to determine E. The weight function w denotes how strongly co-expressed
are each pair of genes in V . For example, in the ATTED-II database, the co-expression
relation between any pair of genes is measured as a z-score expressed as a function of
the co-expression index LS (Logit Score) [18,19].

2.2 Gene Function Prediction

In an annotated gene co-expression network, each gene is associated with the collection
of biological functions to which it is related (e.g., through in vivo experiments).

Definition 2. Let A be a set of biological functions. An annotated gene co-expression
network is a gene co-expression network G = (V, E,w) complemented with an annota-
tion function φ : V → 2A.

The problem of predicting gene functions can be explained as follows. Given an
annotated co-expression network G = (V, E,w) with annotation function φ, the goal is
to use the information represented by φ, together with additional information (e.g., fea-
tures of G), to obtain a function ψ : V → 2A that extends φ. Associations between genes
and functions not present in φ have either not been found through in vivo experiments or
do not exist in a biological sense. The new associations identified by ψ are a suggestion
of functions that need to be verified through in vivo experiments. The function ψ can be
built from a predictor of gene functions, e.g., based on a supervised machine learning
model.
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2.3 Spectral Clustering

The goal of clustering classification on a network is to identify groups of vertices shar-
ing a (parametric) notion of similarity [23]. Usually, distance or centrality metrics are
used for clustering. Spectral clustering is an important clustering method due to its pre-
cise foundation from algebraic graph theory [11]. It has been shown that spectral clus-
tering has better overall performance, but with somewhat more instability compared
to other algorithms [16]. Given a graph G, the spectral clustering decomposition of G
can be represented by the equation L = D − A, where L is the Laplacian, D is the
degree (i.e., a diagonal matrix with the number of edges incident to each node), and
A the adjacency matrices of G. This technique uses, say, the n eigenvectors associated
to the n smallest nonzero eigenvalues of L. In this way, each node of the graph gets a
coordinate in R

n. The resulting collection of eigenvectors serve as input to a clustering
algorithm (e.g., k-means) that groups the nodes in n clusters.

2.4 SHAP

In general, the performance of classification algorithms is determined by the features
used for training a particular prediction. SHAP (SHapley Additive exPlanation) is a
framework that allows us to compute importance values for each feature using concepts
from game theory [13]. Given a predictor and a training set, SHAP assigns Shapely
values to explain which features in the model are the most important for prediction by
calculating the changes in the prediction when features are conditioned. A key advan-
tage of SHAP is that its plots depict the contributions of different weights of features in
a predictor [14].

3 Clustering-Based Function Prediction

This section presents the approach for gene function prediction based on spectral clus-
tering. The approach combines multivariate statistics and supervised learning tech-
niques to create a predictor enriched with the information of clusters. The predictor
takes into account features that capture topological properties of the GCN.

The approach can be independently applied to each function in the set of gene func-
tions A to be predicted. Formally, the inputs of the approach are a GCN, denoted by
G = (V, E,w), an annotation function φ : V → 2A, a (biological) function a ∈ A, a set
K = {k0, . . . , km−1} for sampling the number of clusters, and a constant value c ∈ [0, 1]
for feature selection. The output is a function ψa : V → [0, 1], which indicates for each
gene v ∈ V , the probability ψa(v) of v having the function a.

The proposed approach consists of four stages. First, an enriched graph with infor-
mation in φ is created fromG. Second, m features are created for bothG and its enriched
version obtained in the previous stage, corresponding to the m number of clusters in K.
Third, these new features are filtered by selecting those with more impact in the pre-
diction task. Fourth, supervised learning is used to build the predictor ψa. These stages
are depicted and detailed in Fig. 1. They have been implemented in Python and are
available at https://github.com/migueleci/geneclust. The rest of this section is devoted
to detailing each of the four stages in the approach.

https://github.com/migueleci/geneclust
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Fig. 1. The clustering-based approach is split into four stages. Namely, creation of affinity graph,
clustering computation, feature selection, and training and prediction. Its inputs are a GCN,
denoted by G = (V, E,w), an annotation function φ : V → 2A, a function a ∈ A, a set
K = {k0, . . . , km−1}, and a real number c ∈ [0, 1]. Its output is a predictor ψa, which indicates,
for each gene v ∈ V , the probability ψa(v) of v having function a.

3.1 Affinity Graph Creation

An affinity graph H = (V, E,wH) between G and φ is built. Its weight function is defined
as the mean between the co-expression weight specified by w and the proportion of
shared functions between genes as specified by φ.

Definition 3. The weight function wH : V × V → [0, 1] is defined for any u, v ∈ V as

wH(u, v) =
1
2

(
w(u, v) − 1
max(w) − 1

+
|φ(u) ∪ φ(v)|
|φ(u) ∩ φ(v)|

)
,

where max(w) denotes the maximum value in the range of w (which exists because w is
finite).

It is guaranteed that the range of wH is [0, 1] under the assumption that at least
one element in the range of w is greater than 1 because w : V × V → [1,∞). This is
indeed the case, in practice, because the co-expression between two genes in the GCN
is quantified in terms of the z-score, which is highly unlikely to be 1 for all pairs of
genes.

3.2 Gene Enrichment with Clustering

For each graph X ∈ {G,H}, the goal of this stage is to produce a matrix JX : V × K →
[0, 1] that specifies how likely it is for the genes to be associated to function a when X
is decomposed in a given number of clusters. This is achieved in two steps, namely, by
using clustering and computing a measure for each node in each cluster.

The decomposition of X is performed m times, once for each value k in K. The
approach uses spectral clustering for finding the k clusters. The output of the clustering
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algorithm is an assignment from nodes to clusters. Each cluster is used to gather and
compute information with the goal of deciding whether a significant number of mem-
bers associated to function a is (locally) present. Intuitively, if genes grouped together
have a strong co-expression relation and most of them in the group are associated to
gene function a, the remaining genes are also likely to be associated to a (guilt by asso-
ciation, see [21]). In this way, for each v ∈ V and k ∈ K, the entry JX(v, k) specifies a
p-value indicating if the function a is over-represented in the decomposition of k clus-
ters of X. This process is commonly known as Gene Ontology Term Enrichment and
may use different statistical tests, such as, Fisher’s exact test [30].

3.3 Feature Selection

Matrices JG and JH represent structural properties of the GCN. They also represent
associations between genes and functions based on partitions of each graph. The goal
of this stage is to produce a matrix J : V ×Θ(c)→ [0, 1] by selecting a reduced number
of significant features 0 ≤ Θ(c) ≤ 2m from JG and JH .

Feature selection is conveyed from JG and JH to J using SHAP. Let JG+H denote the
matrix resulting from extending JG with the m columns of JH . That is, for each v ∈ V ,
the expression JG+H(v, ) denotes a function with domain [0, 2m) and range [0, 1], where
the values in [0,m) denote the p-values associated to v in G and the values in [m, 2m)
the ones associated to v in H. For each entry JG+H(v, j), with v ∈ V and 0 ≤ j < 2m, the
mean absolute SHAP value s(v, j) is computed after a large enough number of Shapely
values are computed for feature j (executions of SHAP). Features are selected based on
the cutoff

c ·
2m−1∑
j=0

s(v, j),

i.e., on the sum of mean absolute values by a factor of the input constant c. The first
Θ(c) features, sorted from greater to lower mean absolute SHAP value, are selected as
to reach the given cutoff.

Note that the input constant c is key for selecting the number of significant fea-
tures. The idea is to set c so as to find a balance between prediction efficiency and the
computational cost of building the predictor.

3.4 Training and Prediction

This stage comprises a process that combines different supervised machine learning
techniques/tools to finally build the predictor ψa. In particular, stratified k-fold cross-
validation, the Synthetic Minority Over-sampling Technique (SMOTE) [3], hyper-pa-
rameter tuning [1], and XGBoost [4] are used sequentially in a pipeline. Stratified k-fold
and over-sampling aim to overcome overfitting and learning bias. SMOTE is used to
handle imbalanced datasets for underrepresented classes; it synthesizes new examples
of the minority class from the existing ones. Hyper-parameter tuning aims to improve
the performance of the prediction by optimizing parameters of the classifier such as,
e.g., learning rate and maximum depth of trees. Gradient boosting decision tree algo-
rithm, namely, XGBoost [4], is used as classifier.
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The pipeline takes as input the matrix J, which specifies the significant features of
JG and JH , the annotation function φ, and the set φ−1(a) of genes associated to a. First,
k-fold is applied to split the dataset into k different folds (this k has nothing to do with
the input K). Each fold is used as test set, while the remaining k − 1 folds are used
for training. Furthermore, the training set is balanced using SMOTE to over-sample the
minority class. The balanced training set is used to tune the following hyper-parameters
of the XGBoost classifier: maximum tree depth for base learners, minimum sum of
instance weight needed in a child, boosting learning rate, and subsample ratio of the
training instance.

The prediction is carried out using the best estimator, i.e., the estimator with the
combinations of parameters’ values that achieve the best performance. The output are
the probabilities of associations between the genes in V and function a, namely, the
predictor ψa.

4 Case Study: Zea Mays

Next section describes a case study on applying the approach presented in Sect. 3 to
maize (Zea mays). First, the maize data used for the study is described. Second, two
benchmarks are introduced to compare the performance of the approach. Finally, the
outcome of the proposed approach is contrasted with the benchmarks.

4.1 Data Description and Feature Selection

The co-expression information used in the study is borrowed from the ATTED-II da-
tabase [18]. The gene co-expression network G = (V, E,w) comprises 26,131 vertices
(genes) and 44,621,533 edges. In this case, a z-score threshold of 1 is used as the cut-off
measure for G, i.e., E contains edges e that satisfy w(e) ≥ 1 (most of them satisfying
w(e) > 1). Note that the highest value is assigned to the strongest connections. The
functional information for this network is taken from AmiGO [2]; it contains annota-
tions of biological processes, i.e., pathways to which a gene contributes. It is important
to note that genes may be associated to several biological processes. A total of 5,361
genes are associated to 3,285 functions, comprising 20.5% of the genes in V .

Only 121 (3.7%) functions are associated to more than 10% of the genes in the
GCN; that is, the data is highly imbalanced in most cases. For this reason, only biolog-
ical processes corresponding to functions of level 1 in the function hierarchy defined
by [9] are used for the prediction. For example, if a gene is associated to the function
response to light stimulus and response to stimulus is its ancestor of level 1, then the
gene will be associated to response to stimulus. Note that the functions of level 1 in the
hierarchy are the more general ones.

As result, there are 19 biological processes of level 1, twelve of which are associ-
ated to more than 40 genes. Thus, the final dataset of associations between genes and
functions is more balanced for applying supervised learning. Table 1 lists the 12 bio-
logical processes used for the prediction. In the end, the function φ : V → 2A for G
associates |A| = 12 functions (biological processes of level 1 in function hierarchy) to
5,361 genes. The remaining input parameters are K = {10, 20, . . . , 100} and c = 0.9.
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Table 1. Biological processes A of level 1 in the Gene Ontology hierarchy [9] used for prediction.
The identifier and name of each function is presented in the first and second columns, respectively.
The third column shows the number of maize genes associated to each function.

Term Description Genes % of GCN

GO:0009987 Cellular process 4,269 16.34

GO:0008152 Metabolic process 3,047 11.66

GO:0065007 Biological regulation 1,492 5.71

GO:0051179 Localization 872 3.34

GO:0050896 Response to stimulus 851 3.26

GO:0023052 Signaling 307 1.17

GO:0032502 Developmental process 124 0.47

GO:0000003 Reproduction 78 0.30

GO:0032501 Multicellular organismal process 76 0.29

GO:0022414 Reproductive process 76 0.29

GO:0044419 Biological process involved in interspecies interaction
between organisms

48 0.18

GO:0002376 Immune system process 47 0.18

Figure 2 depicts the distribution of filtered features using SHAP for each function
in A. Note that, in most cases, the features coming from the affinity graph H are more
important (or have more impact) for the prediction task.

Fig. 2. Distribution of selected features using SHAP, from the 20 features corresponding to K =
{10, 20, . . . , 100} forG and H. The features from the affinity graph H have more impact than those
from G.



660 M. Romero et al.

4.2 Benchmarks

Two models are built to benchmark the performance of the proposed approach. First, a
baseline model using only the matrix of associations between genes and functions (i.e.,
matrix representation of function φ) as input features for the prediction. Second, a model
including some topological properties of the GCN as additional features (together with
the representation of φ) to train the predictor.

The topological properties included for each gene in V are the degree, average
neighbor degree, eccentricity, clustering coefficient, closeness centrality, betweenness
centrality, PageRank, Kleinberg’s authority score, Kleinberg’s hub scores, and coreness.
These measures were computed with the help of igraph [12], an open source and free
collection of network analysis tools available in several programming languages.

Fig. 3. Prediction performance measured with recall and precision score for the prediction of the
12 functions in A with the proposed approach and the benchmarks. The approach is labeled as
clust, the baseline benchmark is labeled as base, and the one including the topological properties
is labeled as top.

4.3 Summary of Results

Figure 3 presents the prediction performance of the proposed approach and its compar-
ison to the benchmarks by using the recall and precision scores. It can be seen that the
proposed approach outperforms both benchmarks in terms of the recall score. That is,
the proposed approach is better at identifying the associations between genes and func-
tions even though datasets are highly imbalanced in some cases. For example, recall
scores for the function GO:0065007 are 0.76, 0.33, and 0.31 for clust, base, and top,
respectively. That is, the proposed approach improves the performance in relation to the
benchmarks.

The precision score measures how many of the predicted associations are relevant
(i.e., true w.r.t. φ). Therefore, predictions that are not part of φ are considered as sugges-
tions of possible gene-function associations. For this reason, the recall score is relevant
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Fig. 4. Prediction performance measured by the F1 score with the proposed approach clust, and
the benchmarks base and top.

to measure the performance of the predictions in relation to the known associations in
φ. Note that both (recall and precision) scores of the proposed approach are higher than
0.75 for all functions A. Furthermore, the precision score of the proposed approach is
lower than the benchmarks for 3 functions. In these cases, false positives can be con-
sidered to suggest candidate associations.

Figure 4 presents the F1 scores for the proposed approach and the benchmarks.
Recall that the F1 score is the harmonic mean of precision p and recall r, and it is
defined as F1 = 2pr

p+r . The F1 score of the proposed approach is at least as good as the
base benchmark for 11 out 12 functions. The exception is in relation to the GO:0032502
function.

As final word on the choice of the clustering algorithm, it must be noted that other
clustering algorithms, such as DBSCAN [22], were evaluated. However, spectral clus-
tering showed the best and more consistent performance.

5 Concluding Remarks and Future Work

By combining network-based modeling, clustering, and supervised machine learning,
the approach presented in this paper introduces a novel method to address the gene func-
tion prediction problem. It aims to predict the association probability between each gene
and function, taking advantage of the GCN spectral decomposition, and the informa-
tion available of associations between genes and functions. A comparison between the
proposed approach and two benchmarks on a Zea mayz case study is presented. Using
the structural information of the network, computed by a spectral clustering algorithm,
is likely to be the key for the good performance of other GCN-based predictors. The
proposed approach outperforms the two benchmarks, especially in terms of the recall
score.
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Two main lines of work can be considered for future work. First, gathering more
information of associations between genes and functions for Zea mays is required. This
way, it would be possible to use the functions beyond level 1 in the Gene Ontology
hierarchy, therefore including more specific functions and their corresponding hierar-
chical constraints. Second, applying the proposed approach to identify genes associated
to specific stresses, such as low temperature, can help to reduce the set of candidate
genes that respond to treatments for in vivo validation.
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