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Abstract. Traditional approaches for measuring the concentration of
events pay little attention to the effects of topological properties. To
overcome this limitation, our work develops a theoretical framework to
determine whether events are concentrated on a subset of interconnected
nodes. We focus on low-clustered networks with regular, Poisson, and
power-law degree distributions.

Keywords: Network models - Hotspot formation - Event
concentration

1 Introduction

Defining summary statistics for measuring event concentrations enables us
to explain general patterns of dispersion. It is not surprising that numerous
approaches have been proposed to characterize the distribution of events over
space and time [1-4]. Events may represent activities like crime incidents or traf-
fic accidents. To determine whether there exist areas of high event concentra-
tion (hotspots), traditional approaches generally evaluate the Euclidean distance
between events [3-6].

In particular, kernel-based techniques identify hotspots based on the number
of events that fall inside a given neighborhood [4]. Although a wide class of exten-
sions have been proposed [5,6], they do not make use of topological properties of
networks on which events can be characterized. For example, events like vehicle
thefts, handgun assaults, and traffic accidents are generally constrained to a pla-
nar network (e.g., a street network). For scenarios in which events are associated
to nodes, the corresponding notion of hotspot depends on the geodesic distance
between nodes. As a result, efforts to define summary statistics for measuring
event concentrations cannot directly apply kernel-based techniques.

It is important to emphasize that the problem of detecting hotspots is not
restricted to planar networks. Consider a co-purchase network where nodes rep-
resent users and edges indicate that two users have purchased the same product.
Ratings associated to users denote overall user satisfaction and events represent
users with a very low rating (e.g., two standard deviations below the mean). In
this scenario, a concentration of events represents a subset of dissatisfied users
who have purchased the same set of products.
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In general, the challenge of identifying high event concentrations on (planar
or non-planar) networks arises across a wide range of disciplines. Yet far too little
attention has been paid to developing approaches to identify the concentration of
events on networks. An exception is the work in [7], which introduces a technique
for finding subnetworks that are connected and contain the maximum number of
events on the minimal total path length. The approach in [7] focuses on networks
with a regular degree distribution, but does not take into account the effects of
other degree distributions on the formation of hotspots.

Our research develops a theoretical framework that characterizes the sizes of
the Voronoi cells induced by events to determine event concentration. In other
words, the framework allows us to evaluate whether a set of events represent
the outcome of a non-uniform stochastic allocation process. It can be applied to
determine event concentration on low-clustered networks with three particular
degree distributions, namely regular, Poisson, and power-laws.

2 Preliminaries

Let G = (V, E) be an undirected network, where V"= {vy,--- ,v,} represents
the set of nodes and £ C V x V the set of edges. Let p(v;,v;) denote the geodesic
distance between nodes v; and v;. Moreover, consider the following definition of
a Voronoi diagram [8].

Definition 1. Let U = {uy, -+ ,um} C V denote a set of generator nodes.
The Voronoi diagram of G = (V, E) generated by U is a partition {V (uy), -,
V(um)} of V, such that if v; € V(us), then p(vi,us) < p(vi,ug) for all 8 €
{1,--- ,m}. If p(v;,us) = p(vi, ug ), then node v; is assigned to either V(us) or
V(ug) with equal probability.

A generator node u; represents a node that is associated with the occurrence
of an event (for example, a crime or accident on the intersection of a street
network). Regular nodes represent nodes at which no event occurs and belong
to the set U¢ = V — U. Each element of the Voronoi diagram is called a cell.
Note that cell V(us) contains exactly one generator node, namely us. Note also
that if G is connected, then every regular node v; € V' belongs to a cell.

Let ns = |V (us)| > 1 denote the size of V' (us). Based on Definition 1 and the
distribution of ng for all us € U, that is the distribution of the sizes of the cells,
we aim to determine whether events on G are uniformly distributed. Deviations
from the uniform distribution will indicate a concentration that results from a
non-uniform event allocation.

Consider the regular network in Fig. 1(a), in which a non-uniform allocation
yields relative small geodesic distances between generator nodes. Compared to
Fig. 1(b), where generator nodes are uniformly distributed, most cells of the
Voronoi diagram in Fig. 1(a) contain a small number of regular nodes. Figure 2
shows the probability mass function (pmf) of the sizes of the cells for uniform
and non-uniform event allocations.
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Fig. 1. Resulting Voronoi cells when generator nodes (events) are (a) concentrated,
and (b) located uniformly at random.
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Fig. 2. Probability distributions of the sizes of the Voronoi cells for a network in
which events are uniformly distributed (blue) compared to a network with high event
concentration (red).

Let D denote a random variable that represents the degree of a randomly
selected node of G. Consider a randomly selected node v, with degree d,, = d.
Let Nj = {v' € V : p(v,v") = } represent the neighborhood of nodes located
at a distance ¢ from node v. Moreover, let Dg denote a random variable that
represents the degree of a randomly selected node in V.

To derive the pmf of the sizes of the Voronoi cells, consider assumption 1.

Assumption 1. Suppose the following statements are true:

1. The probability that a randomly selected node has degree d is known.

2. The probability that a randomly selected neighbor of a node with degree d has
degree d' is known.

3. The probability that a randomly selected node, located at a distance greater
than 1 from a node of degree d, has degree d', can be approximated by the
probability that the end node of a randomly selected edge is a node of degree d'.

Assumptions 1.1 and 1.2 require minimum conditions on the network, namely,
that the degree distribution (the pmf of D) and the conditional degree distri-
bution (the pmf of D}) be known. Conditional degree distributions are charac-
terized for various network models and empirical networks [9]. Assumption 1.3
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requires that the conditional degree distribution for nodes located at a distance
greater than one from a node of degree d does not depend on the degree of that
node. Under assumption 1.3, the pmf of Dfl for § > 2, can be approximated as

nP[D:dl]dZ o P[l)zdz}dz

PD(S:dZ% = =
[Da ] 2|E| k

(1)

where k is the average degree of the entire network. The numerator nP[D = d;] d;
represents the total number of end nodes of all edges that are of degree d;. The
denominator 2|E| represents the total number of end nodes of the edges of the
network.

3 Theoritical Framework

Let D, denote a random variable that represents the degree of a randomly
selected generator node. Moreover, let p = m/n, 0 < p < 1, denote the propor-
tion of nodes that are generator nodes. Consider a randomly selected generator
node, denoted as node u. For convenience, let N5 denote Ng'.

Assumption 2. The following statements are true:

1. The degree distribution of the generator nodes resembles the degree distribu-
tion of all nodes of G.

2. If veV(u), v#u, then v € Ny UNs.

8. The local clustering coefficient of node u is negligible.

4. Nodes in No have a single neighbor in Ny.

Let d, = d denote the degree of generator node u. Note that the random
variable Dg represents the degree of a randomly selected node in Ns = Ny'. Let
X4 denote a random variable that represents the size of V(u). Moreover, let X
denote a random variable that represents the number of nodes in V(u) N Nj.
Similarly, let X gi denote a random variable that represents the number of nodes
in V(u)N Ny, that are neighbors of node v;, located in V' (u) N Ny. Note that X3!
and ng are independent and identically distributed random variables.

According to assumptions 2.3 and 2.4, note that

Xg
Xo=|D X7 | +X;+1 (2)
=1

The first term in Eq.2 characterizes the number of nodes in N, which
depends on the realization of X;. The term X é + 1 characterizes the num-
ber of nodes in N; plus the generator node. Let Fiq(z) = P[X} = x| and
Fy4(x) = P[X3" = x] represent the pmfs of X} and X3’. Moreover, let k,, rep-
resent the minimum degree of all nodes. The following theorem characterizes
Fld(ﬁ).
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Theorem 1. The pmf of X} is given by
Fia(z) =P[R} =i|Pi(z,i, P[W; = 1))

where

P[R} = 2] = P(z,d,1 — p),

> PDj=d;]P(x,d; — 1,p)

U

i=km

P[Z) =] =
POVE=el = 3 PZ) =P, (5 ).

9

d —x
Pi(z,d,q) = x) q“(1—q)* ",
Py(z,q) =q¢"(1—q)'""
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The proof of all theorems can be found in the extended version of this paper.
Note that Fiq(z) can be obtained if p and the pmf of D} are known. Next,

Theorem 2 characterizes Fpq(x).

Theorem 2. The pmf of X3 is given by

Foy(z) = ZP[YdQ = i|Py(x,i, P[W3 = 1])

1=0
where
P[R2 ] Zgj:zurl P[Dglz = dj]P1(33adj -1,1 —P) (djl_i)
d =TI = o o s
Dk 2od,—k41 PDg = d;j]Pr(k,dj — 1,1 — p) (ﬁ)
", P[D= d;| d;

d; _km

PlY} =a] = ZPRdszlsz[G =0)),
1=0

_ __ PID§ = di]Py(0,d; —1,p)

Y Yo, PIDG = dilP1(0,d; — 1,p)’

k

P[Z3 =2] = zn: P[D3=d;| P (az,di—l,l— ZL: MP1(0 di— )),

di=km

:xhéﬂzﬁzm (“il)

di=km

()
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Let Fy(x) = P[X4 = x] represent the pmf of X; and note that Fog(z) can
be obtained if p and the pmfs of D} and D3 are known. The following result
characterizes Fy(z).

Theorem 3. The pmf of X4 is given by

d

Fa(z) =) Fua(i)Fa(z —i— 1) (6)

=0

where

0 otherwise

() = {1 r=0 (7)

Faq(x) = Faa(2) (8)
Fig(x)= ) Fyq'(x —m)Faa(m) (9)

Note that if Fp, is known, then F}, can be obtained recursively. According to
Theorem 3, we can derive an expression for Fy(z) using Egs. 3 and 4. To define
the pmf of the sizes of the Voronoi cells, let X denote a random variable that
represents the size of the cell of any randomly selected generator node. Moreover,
let F(x) = P[X = z] represent the pmf of X. Note that

n

Fx)= Y PD, = d|Fyx) (10)

d=km

According to Eq. 10, if Dy and F,;(z) are known, we can derive F'(x). Based
on Theorems 1, 2, and 3, Algorithm 1 yields the pmf of the sizes of the Voronoi
cells when generator nodes (events) are uniformly distributed. The inputs of
Algorithm 1 are the proportion of generator nodes, the degree distribution, and
the conditional degree distribution of the network.

Figure3(a) shows compares the cumulative distribution function (cdf)
obtained from simulations (dots) against the theoretical distribution (dashed
line) for a regular network. Note that the theoretical distribution matches the
distribution of the cell sizes of the simulated network. Figure 3(b) illustrates the
pmf of the theoretical distribution.

Furthermore, Fig.4(a) shows compares the cdf from simulations (dots)
against the theoretical cdf (dashed line) for a power-law network. Note that
some dots do not remain on the dashed line, but are closely located. Figure 4(b)
illustrates the pmf of the theoretical distribution.

We measure the similarity between the simulated and the theoretical pmfs
using the Pearson’s Chi Square test. The test quantifies the likelihood that data
obtained from simulations is the result from the theoretical distribution obtained
through Algorithm 1. Let F(i) represent the proportion of cells of size i, and
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Algorithm 1. Computing the theoretical pmf of X.
Input: Pmfs of D and D{, and p.
Output: F(x)

1: ky, < minimum degree of all nodes in G

2: for d — k., ton do

3:  Compute the pmf of R}, Z3, W, and Fiq (using egs. 3 - ?7)

4:  Approximate the pmf of D? (using eq. 1)

5:  Compute the pmf of R}, G2, Y7, D2, Z3, W3, and Fag (using egs. 4 - 5)
6:  Compute Fy; and Fj, (using egs. 7 and 8)

T Fa(e) = Fia(O)FS( — 1) + Fua(1) Fly(z — 2)

8 for j«—2tod do

9: Compute F, (using eq. 9)

100 Fa(x) — Fa(@) + Fra()Fla(e —j — 1)

11:  end for

12: end for

13: Compute F' (using eq. 10)
14: return F(x)
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Fig. 3. Theoretical distribution of the sizes of the Voronoi cells, obtained from Algo-
rithm 1 for a regular network with n = 20000, d = 15 and p = 0.1. (a) Probability
plot of simulated distribution that results from 100 simulation runs. (b) Plot of the
theoretical distribution F'(z).

N, the set of the cell sizes obtained through each simulation. For a network with
m generator nodes, the test-statistic value is defined by

2(FoF)=m > —”)2 (11)

i€EN

Figure5 shows the percentage of simulations where the null hypothesis is
accepted for different significance levels . For regular and Poison networks, a
significance level of @ = 0.05 is sufficient to validate that the simulated dis-
tributions resemble the theoretical distribution for more than 95% of all runs.
However, power-law networks require a level of significance a < 1074 to validate
the null hypothesis for more than the 90% of all runs. Next, we introduce a met-
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Fig. 4. Theoretical distribution of the sizes of the Voronoi cells, obtained from Algo-
rithm 1 for a power-law network with n = 20000, and p = 0.12. (a) Probability plot
of the simulated distribution that results from 100 simulation runs. (b) Plot of the
theoretical F(z).

ric which uses theoretical distribution of the sizes of the Voronoi cell to define
a formal criterion to determine the concentration of events on a network. In
particular, we propose a criterion that uses the theoretical distribution derived
in this section to determine whether events are concentrated on a network.
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Fig. 5. Percentage of null hypothesis acceptance when generator nodes are located
uniformly at random for 100 simulation runs.

4 Event Concentration Criterion

Consider a network G that satisfies assumption 1. Let F,(z) represent pmf of
the sizes of Voronoi cells when events are marked as generator nodes. Moreover,
let F'(z) be the pmf obtained through Algorithm 1.

Criterion 1. (Hotspots criterion)
1. For regular and Poisson networks, there is event concentration if

X (Fe, F) = c(a) (12)
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where ¢ is a threshold value of the Chi Square distribution, which depends on
the significance level a.
2. For power-law networks, there is event concentration if, for 0 < p <1,

W(Fe,F) >3 (13)
where
n(F) — n(Fe)
a(F)—1 "~
Qi(F)— Q1(F)—1

n(F) =4 Z F + (025 - Z F(@i) | QuF) | (15)

W(Fe, F) =

Note that n(F') represents the average size of the cells in the first quartile,
Ql: OfF

Note that the criterion for identifying hotspots depends on the distribution
of the sizes of the Voronoi cells, which in turn depends on the degree distribution
of the network. Moreover, note that Algorithm 1 returns F', which we compare
with the empirical distributions of the sizes of Voronoi cells. Deviations from
F' indicate the amount of concentration of events on the network. For regular
and Poisson networks, deviations are measured using the x? test. For power-law
networks, deviations are measured based on the average size of the cells in the
first quartiles of F' and F..

Next, to evaluate the performance of the proposed criterion, we generate
artificial hotspots with different levels of concentration and a constant number
of events m = 2000. For the method used to generate the artificial hotspots
the lower the number of hotspots, the stronger the concentration of the events.
Figure 6(a) illustrates Eq. 12 of the criterion for different numbers of hotspots
on the regular network. The error bars represent the standard deviations of the
x? value for 100 simulations. Figure6(b) shows the percentage of simulations
for which the null hypothesis is rejected, meaning that a hotspot formation is
identified. Note that the criterion suggests that if the number of hotspots is
greater than 500, then for most cases there is no hotspot detection. According
to Fig. 6(b) the null hypothesis is rejected for every simulation and any level of
significance a when h < 200. In other words, the criterion is able to identify the
presence of hotspots, when fewer, stronger hotspots emerge (at most h = 200).

Next, Fig. 7(a) illustrates Eq. 12 for different numbers of hotspots on the Pois-
son network. Figure 7(b) shows the percentage of cases where the null hypothesis
is rejected. Note that criterion 1.1 identifies the formation of hotspots for every
simulation when h < 100. Compared to regular networks, this suggests that
identifying hotspots on a Poisson network requires a stronger concentration of
events than for a regular network.
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Fig. 6. (a) Value of x? for varying number of hotspots for regular networks (k = 15

for 100 simulations). (b) Percentage of rejected null hypothesis for varying number of
hotspots.
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Fig. 7. (a) Value of x? for different number of hotspots for Poisson networks (¢ = 0.0015

for 100 simulations). (b) Percentage of rejected null hypothesis for varying number of
hotspots.

According to Figs.6 and 7, if a < 0.05, the criterion identifies no concen-
tration of events for all cases when events are located uniformly at random
(h = 2000), for regular and Poisson networks. Indeed, note that for both net-
works if @ = 0.01, then the criterion determines that there is no event concen-
tration for A > 1000. Furthermore, the criterion identifies event concentration
for h < 500.

Figure 8(a) illustrates Eq. 14 for different numbers of hotspots. Figure 8(b)
shows the performance of the criterion for varying values of g for the power-
law network. Note that if 3 = 0.75, then the criterion does not identify hotspot
formation when h > 1000. However, if the values of 3 increases, then the criterion
does not identify hotspots for very small values of h.
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Fig. 8. (a) Eq. 14 for varying number of hotspots for the power-law network. (b) Per-
centage of instances the criterion determines that there exists event concentration for
varying number of hotspots.

Let the optimal 3 be the minimum value such that criterion 1.2 determines
that there is no event concentration when each hotspots is formed by 1 or 2 gen-
erator nodes. Note that, according to Fig. 8(b), the optimal 3 for this particular
case is 0.75. Figure9 illustrates the optimal 3, obtained through simulations,
for varying proportions of generator nodes. Note that the optimal 8 does not
depend on the proportion of generator nodes.
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Fig. 9. Optimal § for varying proportion of generator nodes.

5 Conclusions

The proposed framework enables us to derive a summary statistic for measuring
event concentration based on Voronoi diagrams. It provides an approximation
for the distribution of the sizes of Voronoi cells generated by uniformly random
events on networks with regular, Poisson, and power-law distributions. Compar-
ing the theoretical cell size distribution with the distribution that results from
empirical events, the proposed criterion determines whether there exists event
concentration. The criterion quantifies deviations between cell size distributions
depending on the degree distribution of the network.
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