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Abstract. Preferential attachment models are used to explain the emer-
gence of power laws in the degree distributions of networks. These mod-
els assume that a new node attaches to a network by establishing edges
to a fixed number of nodes. Nonetheless, for many empirical networks
the number of new edges varies as more nodes become part of the net-
work. This paper extends the linear preferential attachment model by
considering that the number of new edges is characterized by a random
variable that obeys a power law probability function. While most new
nodes connect to a few nodes, some nodes connect to a larger number.
We characterize the dynamics of growth of the degrees of the nodes and
the degree distribution of the network.
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1 Introduction

The power law degree distribution of a number of networks can be explained
by the principle of preferential attachment [3]. Linear preferential attachment,
in particular, assumes that (i) new nodes attach to a network by establishing a
fixed number of edges; and (ii) the probability of connecting to a target node is
proportional to the degree of that node [1]. The model introduced in [1] generates
networks in which the nodes that have been part of the network the longest gain
over time the highest number of edges. However, the growth of the number of
edges may not necessarily depend on the extent to which nodes have been part
of the network. Nodes that recently joined network may quickly acquire a larger
number of connections (e.g., in the context of citation networks, papers written
by prestigious authors may earn a large number of citations in a short time). To
allow new nodes to quickly become highly connected, the work in [2] introduces
the concept of node fitness which considers that nodes have different abilities
to compete for new edges. The fitness model assigns to each node a quality of
attracting new edges and assumes that this fitness value does not varying over
time.
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This paper introduces a fitness-weighted preferential attachment mechanism.
As in [2], each node has a fitness that remains unchanged over time. Unlike [2],
the number of new edges established by the new node depends on the number
nodes that are part of the network. Specifically, the probability that a new node
connects to m nodes is proportional to m~* for s > 0. While most new nodes
connect to a few nodes, some new nodes connect to a larger number of nodes.

The contributions of our work are twofold. First, we describe the evolution
of the degree of the nodes when the probability of connecting to a node obeys
fitness-weighted preferential attachment. Second, we prove that the probability
distribution of the degree of the nodes converges.

The remaining sections are organized as follows. Section 1 presents the for-
mation mechanisms of the proposed model and derives the asymptotic behavior
of the expected number of new edges. Section 2 characterizes the degree dynam-
ics of a node. Sections 3 and 4 derive the degree distribution over all nodes and
analyzes the asymptotic behavior of the expected value of the average network
degree. Finally, Sect. 6 draws some conclusions and future research directions.

2 Attachment with Power Law Growth

Consider an undirected graph G;(V;, E;) with a set of nodes V; and a set of edges
E,. For t = 0, let Go(Vo, Ep) be the initial graph with |Vy| = ng and |Ep| = lo.
Let g(t, 1) describe the degree of node i at time ¢. Moreover, let M; be a random
variable that describes the number of edges established by a new node attaching
to the network. The evolution of G; is based on the following mechanisms:

(i) Node growth: For each t, a new node is added to the set of nodes V;_.
(ii) Edge growth: For each t, M; follows a probability function

fi(m) = P[My = m] = C(t)m™", (1)

where s € R represents the scaling coefficient and C(t) represents the
proportionality constant of the distribution at time t.

(i4i) Preferential attachment with fitness: The new node connects to node
1 € Vi_1 with probability

g > miglt—1,9) )
JEV-1

where 7 follows a distribution p(n) and each 7; represents fitness parameter of
node i. The value of 1 remains fixed over time.

Figurel illustrates the dynamics of a network based on the above mecha-
nisms. According to mechanism (i), the set of nodes grows by the continuous
addition of a node at every time step, so n(t) = |V;| = ng + t. According to
mechanism (i7), the growth of the set of edges follows a power law. The support
of the probability function in (1) is V;_1, so all instances of M, are less than or



614 J. Romero et al.

O—0
() t=1 dt=3

Fig. 1. Network evolution when the number of new edges (depicted by the dashed
edges) follows a power law probability function.

equal to n(t —1). Moreover, at any time ¢, the proportionality constant of f;(m)
satisfies

n(t)—1 n(t)—1
1= Y Ctm™=C(t) > m*=Ct)Hys), (3)
m=1 m=1
where
n(t)—1

Hy(s) = Z m~° (4)
m=1

represents the generalized harmonic number of order s. Note that C(t) =
1/H(s). Note also that Hi(s) depends of the initial number of nodes ng. As
t tends to infinity, H;(s) exists if s > 2, in which case the limit of Hy(s) is
represented by the Zeta-Riemann function.

Jim Hi(s) = 3 m " = ¢(s) (5)
The cumulative distribution function of M; is given by
F,, = P[M; < m] =C(t)Hpn(s),

where 1 <m < n(t) — 1.
At any time ¢, the expected number of edges that a new node establishes is

n(t)—1

S e I L R

1

m=1

where 6(0) = 0. Note also that E[M?] = H}’{(ts(;)z), which implies that
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S t\s — - t\S — 2
o(t) = Var[My] = E[M2) — B[My]? = TS Hi)s)QH( D* g

According to lemma 1 in [3], 6(t) and o(t) satisfies

(a) lim 6(t) = NON

8)C(s —2) — (s —1)2
) oy oty = Sl =B o=

(c) 6(t) is a strictly increasing function.

and

To characterize the average of all instances of (t) in the limit of ¢, according
to lemma 2 in [3], if s > 2, the asymptotic behavior of the average of the instances
of (t) satisfies

; _ Ss—1)

lim 0t =

A= )

where 0, = S, @.

3 Degree Dynamics

We want to derive a functional form of the evolution of the degrees of the nodes
as the network grows. Consider the following assumption.

A1: The number of nodes of the network grows at a constant rate.

As a direct consequence of Al, the rate of change of the degree of any node
is proportional to the probability that a new node establishes an edge to that
node. That is, for node 4

= 0(t) (i) 9)

_ e(t) nig(tvi) (10)

Zjevt n;9(t, 7))

Note that if p(n) = 6(n — 1), i.e., all fitness are equal and (9) reduces to the
scale-free model with varying number of new edges [3]. For that particular case,

1/2
g(t, i) = 0(t) (ti) where ¢; denotes the time at which node 4 attaches to the

network. To solve (9), consider an evolution of g that follows a power law, with
exponent (3. That is

g&J>w9@>(t)mm2 (1)

t;

Note that the exponent 8 depends on 7;, which represents multiscaling in the
dynamics of the degree of the nodes. Since nodes can only increase the number
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of edges over time and at most one edge is established to any particular node
at any time ¢, the value of 8 is bounded [2]. Moreover, since a node can only
increase the number of edges over time, 0 < [(n) < 1.

To specify 3(n), we need to derive the expected value of Zj n;9(t, j). Since
a new node attaches the network at ¢t = ¢;, the sum of the degree-weighted over
all nodes of the network is

<Z77j9(t7j)>=/ /1 np(n)g(t, i)dt;dn (12)

= [wtonan [ 000 (fi)ﬁ(m)dti (13)

t — 8

= / np(n)dno(t) T30

Since 4(n) < 1, in the large ¢ limit, t° (m) is negligible compared to t. Therefore

<znjg<t,j>> ~ 00, (15)

(14)

where )
np\n
52/7@7. 16
1= p(n) (1)
According to (15), we can write (9) as

dg(t,i) _ 0(t)mig(t, i)

~ : 17
dt E0(t)t (17)
In the large ¢ limit, we obtain
dg(t,1) ~ 0* nig(t,7) (18)
dt €0t
i t7 ;
~ Mig(ti) (19)
&t
where tlim 0(t) = 0*. Equation 18 has a solution of the form defined in (11), if
n
B(n) = 3 (20)
To determine the value of £, note that substituting (20) in (16) we obtain
TImax 1
1 :/ T——p(n)dn. (21)
0 a1
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Fig. 2. Degree dynamics for nodes that attach to the network at ¢ = 10, ¢t = 100
and ¢ = 1000 when 7 follows a uniform distribution. The solid lines represents the
theoretical predictions. The curves represent averages over 100 runs. Inset: Asymptotic

convergence of £(t) = 22:1 n;g9(t, j)/t.

It is of interest to consider the behavior of the network when nodes with
different fitness compete for new edges. In particular, when 7 is chosen uniformly
from the interval [0, 1]. Using (21) the constant & is defined as

xp(~2/) =1~ 7 (22)

which has solution £* = 1.255. Figure 2 shows the behavior of g(¢,7) for a simu-
lated network with s = 4.

4 Degree Distribution

Next, we calculate the degree distribution Q:(k), that is, the probability that a
node has degree k at time ¢, when t — co we denote by Qoo (k) = Q(k). [4] shows
how to find the functional form of Q(k) for fixed ¢, based on [4] we characterizes
the asymptotic behavior of Q;(k). Let ¢ be the minimum degree of the network
at time ¢, the probability that a node has degree k = ¢ at time ¢ is

_ Ot
M QTR0 =

where 77, = > A, |ZT],4 If k£ > ¢ the probability that a node has degree k at

time ¢ is

C()k™*E(t)t + n(t)—1(k — 1)Q¢(k — 1)
§(6)t + n(t)ik

Qi(k) = (24)
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Fig. 3. Degree distribution for a simulated network (dotted curve) and the theoretical
prediction (solid curve). Inset: The dependence of 3(n) on the fitness parameter n when
p(n) follows a uniform distribution in [0, 1].
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Fig. 4. Asymptotic degree distribution for a simulated network and the theoretical
prediction for k = 1,2, 3,4.

Therefore, the asymptotic degree distribution, if k£ = ¢, is

7 C*gfsg*
QO = Gy (25)
and if k >/
Q(k}) _ C*k_sg* + 'F]k—l(k — 1)Q(k — 1) ) (26)

£ + ik
Figures 3 and 4 show the degree distribution for the mechanism with s = 4
and the asymptotic behavior of the degree distribution.
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We now turn our attention to understanding the behavior of the expected
average network degree.

5 Expected Average Degree

The expected degree of a node, selected uniformly at random at time ¢, is equal to
the expected average degree of the network at time ¢. This section characterizes
the asymptotic behavior of the expected average degree of the network. Let N,
denote the total degree at time ¢. The expected value of Vy is

e(t) = E[Ny] =2 (zo + Ze@) . (27)

=0

Furthermore, let D; denote a random variable that describes the average
degree of the network. For ¢ > 0 the expected value of D, is

¢
0 20 +2) _ 0(i)
e(t i=0
d(t) =ED{] = —F = —"7-—"7—. 28
() = BD] = 55 - ——= (28)
Since 6(0) = 0, note that d(0) = % The following theorem characterizes
the asymptotic behavior of d(t).

Theorem 1. The asymptotic behavior of expected average degree d(t) converges

to
gl 1)
Jlim d(t) =2 <0 (29)

Proof. Since
t
2o +2_6(i)
_ i=0

d(t) ng+t

b

note that .
. : . 1 .
Jlim d(t) =2 lim it 2 lim o ;0(2). (30)

Therefore, applying lemma 2 in [3] to (30), we obtain (29).

Figure5 illustrates the asymptotic behavior of d(t).
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Fig. 5. Asymptotic behavior of the average degree d(t) and simulated average degree
with s = 4. Inset: Asymptotic behavior of 6; and simulated average of all instances
of Mt.

6 Conclusions

This paper introduces a novel model that relaxes the original assumption of
the Barabdsi-Albert model on how new edges are established. We characterize
the dynamics of the growth of the degrees of the nodes and derive the asymp-
totic behavior of the resulting cumulative distribution. The resulting distribution
approaches a stationary distribution if and only if the scaling exponent of the
distribution of new edges is strictly greater than two. Finally, we show that the
expected value of the average degree converges to an equilibrium. Understanding
how other probability functions, of the number of edges established by the new
nodes, impact the evolution of the network remains a future research direction.
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