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Abstract. This papers applies the spectral evolution model presented
in [5] to networks of mentions between Twitter users who identified mes-
sages with the most popular political hashtags in Colombia (during the
period which concludes the disarmament of the Revolutionary Armed
Forces of Colombia). The model characterizes the dynamics of each men-
tion network (i.e., how new edges are established) in terms of the eigen
decomposition of its adjacency matrix. It assumes that as new edges
are established the eigenvalues change, while the eigenvectors remain
constant. The goal of our work is to evaluate various link prediction
methods that underlie the spectral evolution model. In particular, we
consider prediction methods based on graph kernels and a learning algo-
rithm that tries to estimate the trajectories of the spectrum. Our results
show that the learning algorithm tends to outperform the kernel methods
at predicting the formation of new edges.
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Eigen decomposition · Graph kernels

1 Introduction

Social networks have become increasingly relevant for understanding the political
issues of a country. On such platforms, users share perceptions and opinions on
government and public affairs, creating political conversations that often unveil
specific patterns of interaction (e.g., the degree of polarization on a current
issue). While some studies focus on identifying which profiles play a key role in
shaping user-user interactions [9,10], others studies focus on how the user terms
and conditions of social networks influence broad political decisions [3,6].

Not surprising, analyzing the patterns that arise from online conversations
on social networks has received wide attention [7,8]. Understanding the broad
dynamics of user interactions is an important step to evaluate both the formation
and political ramifications of stationary patterns. More specifically, characteriz-
ing the evolution of user interactions requires the development of models that
predict how new edges are established. For example, predicting the formation
of new edges is useful to identify whether an influential user retains her status
over time or whether a political polarization reflects a dynamic process or a
stationary state [2].
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This paper uses the spectral evolution model presented in [5] to capture
the dynamics of user interactions and evaluate which link prediction method
best estimates the formation of new edges over time. The spectral evolution
model considers that the growth of a network can be captured by its eigen
decomposition, under the assumption that its eigenvectors remain constant. If
this condition is satisfied, the estimation of the formation of new edges can
be masked as a transformation of the spectrum through the application of real
functions (using graph kernels) or through extrapolation methods (using learning
algorithms that estimate the spectrum trajectories) [4].

The main contribution of this paper is to apply the spectral evolution model
to networks of mentions between Twitter users who identified messages with
the most popular political hashtags H. Vertices represent users and there exists
an edge between two users if a user mentions the another user using a hash-
tag h ∈ H. We select the most popular hashtags related to political affairs in
Colombia between August 2017 and August 2018, the period which concludes
the disarmament of the Revolutionary Armed Forces of Colombia (Farc) and
marks the end of the armed conflict. Different prediction methods are compared
to identify which prediction method best describes the evolution of each mention
network.

The remainder of the paper is organized as follows. Section 2 describes the
networks used for our analysis. Section 3 presents the spectral evolution model
and verifies that the model can be applied to the mention networks. Section 3 also
overviews the different link prediction methods that underlie the model. Section 4
presents the results of applying the spectral evolution model with various link
prediction methods. Section 5 draws some conclusions and future research direc-
tions.

2 Data Description

The dataset consists of 31 mention networks between Twitter users who defined
their profile location as Colombia. These networks capture conversations around
a set of hashtags H related to popular political topics between August 2017 and
August 2018. Users are represented by the set of vertices V . The set of edges
is denoted by E; there exists an edge {i, j} ∈ V × V between users i and j, if
user i identifies a message with a political hashtag in H (e.g., #safeelections)
and mentions user j (via @username). The mention network G = (V,E) is
represented as a weighted multi-graph without self-loops, which means that it is
possible to have multiple edges between two users. Our analysis is based on the
largest connected component of G, denoted by Gc = (Vc, Ec).

A network is built for each hashtag h ∈ H. Table 1 shows a description of
the hashtags and the resulting networks, including the number of vertices and
edges (|V | and |E|) for the whole network G, the number of vertices and edges
(|Vc| and |Ec|) for its largest component Gc, the community modularity (Q) of
Gc, and the number of communities (m) of Gc.
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Table 1. Mention networks with political hashtags. English translations for some pop-
ular political hashtags appear in parenthesis.

Set of hashtags H G Gc

|V | |E| |Vc| |Ec| Q m

0 abortolegalya (legal abortion now) 2235 2202 1282 1538 0.89 30

1 alianzasporlaseguridad (security alliance) 176 1074 150 351 0.34 7

2 asiconstruimospaz (how we build peace) 2514 14055 2405 6950 0.56 16

3 colombialibredefracking (ban fracking) 1606 3483 1476 3127 0.62 19

4 colombialibredeminas (ban mining) 707 2685 655 1421 0.51 14

5 dialogosmetropolitanos (city dialogues) 959 18340 932 4134 0.34 10

6 edutransforma (education transforms) 166 1296 161 404 0.40 9

7 eleccionesseguras (safe elections) 3035 17922 2634 7969 0.51 20

8 elquedigauribe (whoever Uribe says) 2375 6933 2052 5272 0.65 20

9 frutosdelapaz (fruits of peace) 1671 6960 1479 3468 0.58 18

10 garantiasparatodos (assurances for all) 388 814 340 563 0.55 10

11 generosinideologia (no gender ideology) 639 914 615 805 0.63 12

12 hidroituangoescololombia 1028 3362 883 2252 0.68 15

13 horajudicialur (judicial hour) 2250 23647 2187 6756 0.42 14

14 lafauriecontralor (comptroller Lafaurie) 2154 7082 1999 5309 0.59 14

15 lanochesantrich 1518 6946 1444 3567 0.45 13

16 lapazavanza (peace advances) 2949 8288 2775 6569 0.70 18

17 libertadreligiosa (religious liberty) 1584 13443 1395 6856 0.38 15

18 manifestacionpacifica 211 274 112 151 0.69 9

19 plandemocracia2018 (democracy plan) 3090 20955 2962 7996 0.58 22

20 plenariacm (plenary) 1504 19866 1460 4782 0.41 15

21 proyectoituango 1214 3086 1186 1891 0.53 44

22 reformapolitica (political reform) 2714 8385 2608 5928 0.66 18

23 rendiciondecuentas (accountability) 5103 25479 4401 10308 0.84 33

24 rendiciondecuentas2017 1711 12441 998 2933 0.51 16

25 resocializaciondigna 503 4054 496 1171 0.46 8

26 salariominimo (minimum wage) 2494 7041 2079 5016 0.71 22

27 semanaporlapaz (week of peace) 1988 8103 1732 4860 0.69 25

28 serlidersocialnoesdelito 530 861 439 697 0.67 15

29 vocesdelareconciliacion (reconciliation) 161 1500 158 405 0.34 7

30 votacionesseguras (safe voting) 2748 13307 2439 5338 0.66 24

The modularity and number of communities shown in Table 1 are computed
with the multilevel community detection algorithm [1]. Note that Q > 0.3 for
all networks in the dataset, i.e., community structure can be observed for all
mention networks.

3 Spectral Evolution Model

Let A denote the adjacency matrix of Gc. Furthermore, let A = UΛUT denote
the eigen decomposition of A, where Λ represents the spectrum of Gc. The
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spectral evolution model characterizes the dynamics of Gc (i.e., how new edges
are created over time) in terms of the evolution of the spectrum of the network,
assuming that its eigenvectors in U remain unchanged [4,5]. In other words,
assume that the dynamics of the network may only involve small changes in
behavior of the eigenvectors.

3.1 Spectral Evolution Model Verification

To apply the spectral evolution model, we need to verify the assumption on the
evolution of the spectrum and eigenvectors. Every network Gc has a timestamp
associated to each edge, representing the time at which the edge was created.

Spectral Evolution. For a given network, the set of edges is split into 40 bins
based on their time stamps. Figure 1 illustrates the top 8% of the largest eigenval-
ues (by absolute value) for two mention networks, namely, #educationtransforms
and #howwebuildpeace. For both cases, the eigenvalues grow irregularly, that
is, some eigenvalues growth at a higher rate than others. Most of the networks
in the dataset show this irregular behavior in spectrum evolution.

(a) #EduTransforma (b) #AsiConstruimosPaz

Fig. 1. Spectral evolution for mention networks #educationtransforms (left) and
#howwebuildpeace (right).

Eigenvector Evolution. At time t, consider the adjacency matrix A(t), with
1 ≤ t ≤ T . The eigenvectors corresponding to the top 8% of the largest eigen-
values (by absolute value) at time t are compared to the eigenvectors at time
T = 40. In particular, the cosine distance is used as a similarity measure to
compare the eigenvectors U(T )i and U(t)i, for each latent dimension i.

Figure 2 shows that some eigenvectors have a similarity close to one during
the entire evolution of the network. These eigenvectors correspond to the eigen-
vectors associated to the largest eigenvalues. Note also that at some time instants
the similarity for some eigenvectors drops to zero, which can be explained because
eigenvectors swap locations during eigen decomposition. To identify such changes
we verify the stability of the largest eigenvectors.
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Fig. 2. Eigenvector evolution for mention networks #educationtransforms (left) and
#howwebuildpeace (right).

Eigenvector Stability. For a given network Gc, Let ta and tb be the times
when 75% and 100% of all edges have been created. The eigen decomposition
of the adjacency matrices are given by Aa = Ua Λa UT

a and Ab = Ub Λb UT
b .

Similarity values are computed for every pairs of eigenvectors (i, j) using:

simij(ta, tb) = |UT
(a)i · U(b)j |.

The resulting values are plotted as a heatmap, where white cells represent a
value of zero and black cells a value of one. The more the heatmap approxi-
mates a diagonal matrix, the fewer eigenvector permutations there are, i.e., the
eigenvectors are preserved over time. Figure 3a shows sub-squares with inter-
mediate values (between zero and one) for the #democracyplan2018 network.
These sub-squares result from an exchange in the location of eigenvectors that
have eigenvalues that are close in magnitude.

(a) Eigenvector stability (b) Spectral diagonality test

Fig. 3. Eigenvector stability and spectral diagonality test for the #democracyplan2018
network.
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Spectral Diagonality Test. As for the eigenvector stability test, consider the
eigen decomposition of the adjacency matrix of Gc at time ta, Aa = Ua Λa UT

a .
At time tb > ta the adjacency matrix is expected to become Ab = Ua(Λa +
Δ)UT

a , where Δ is a diagonal matrix and indicates whether the growth of the
network is spectral.

Using least-squares, the matrix Δ can be derived as Δ = Ua(Ab − Aa)UT
a .

If Δ is diagonal, then the growth between ta and tb is spectral. We find that the
matrix Δ is almost diagonal for all mention networks. Figure 3b, for example,
shows the diagonality test for the #democracyplan2018 network.

3.2 Growth Models

Previous sections have verified that the assumptions underlying the spectral
evolution model seem to hold to some extent. Broad speaking, eigenvalues grow
while eigenvectors remain fairly constant over time.

Next, we consider network growth as a spectral transformation, i.e., in terms
of the eigen decomposition of the adjacency matrix. Let K(A) be a kernel of
an adjacency matrix A, whose eigen decomposition is A = UΛUT . Graph
kernels assume that there exists a real function f(λ) that describes the growth
of the spectrum. In particular, K(A) can be written as K(A) = UF (Λ)UT , for
some function F (Λ) that applies a real function f(λ) to the eigenvalues of A.
In particular, we use the triangle closing kernel, the exponential kernel, and the
Neumann growth kernel.

Triangle Closing Kernel. The triangle closing kernel is expressed as A2 =
UΛUT UΛUT = UΛ2 UT , since UT U = I. This spectral transformation
replaces the eigenvalues of A by their squared values. The real function associ-
ated to the triangle closing kernel is f(λ) = λ2.

Exponential Kernel. The exponential of the adjacency matrix A is called
the exponential kernel. This kernel denotes the sum of every path between two
vertices weighted by the inverse factorial of its length. It is expressed as

exp (αA) =
∞∑

k=0

αk 1
k!

Ak,

where α is a constant used to balance the weight of short and long paths. The
real function associated to the exponential kernel is f(λ) = eαλ.
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Neumann Kernel. The Neumann kernel is expressed as

(I − αA)−1 =
∞∑

k=0

αkAk,

where α−1 > |λ1| and λ1 is the largest eigenvalue of A. Its real function is given
by f(λ) = 1/(1 − αλ).

Spectral Extrapolation. As noted above, graph kernels assume that there
exists a real function f(λ) that describes the growth of the spectrum. However,
when the evolution of the spectrum is irregular, as in Fig. 1a, it is not possible
to find a simple function that describe network growth. The spectral extrapo-
lation method is a generalization of the graph kernels, which extrapolates each
eigenvalue under the assumption that the network follows the spectral evolution
model [4].

More specifically, given a network with a timestamped set of edges, the set
is split into three subsets named training, target and test sets. Consider two
time instants ta and tb. Let Aa represent the adjacency matrix of the network at
time ta and Aa + Ab the adjacency matrix at time tb. The eigen decompositions
of the network at the two time instances are given by Aa = Ua Λa UT

a and
Aa + Ab = Ub Λb UT

b .
Next, let (λb)j be the j-eigenvalue at time tb. Its previous value at time ta is

estimated as a diagonalization of Aa by Ub as follows:

(λ̂a)j =

(
∑

i

(Ua)T
i (Ua)j

)−1 ∑

i

(Ua)T
i (Ua)j(λa)i,

where (Ua)i and (λa)i are the eigenvectors and eigenvalues of A, respectively.
A linear extrapolation is now performed to predict the eigenvalues (λ̂c)i at a
future time tc,

(λ̂c)j = 2(λb)j − (λ̂a)j .

The predicted matrix Λ̂c is used to compute the predicted edge weights Âc =
Ub Λ̂c UT

b .

4 Case Study: Twitter Conversations

This section presents the results of applying the proposed kernels (namely, tri-
angle closing, exponential, and Neumann kernels) and the extrapolation method
to predict the creation of new edges across the mention networks described in
Sect. 2. Curve-fitting methods are applied to find the parameters α of the expo-
nential and Neumann kernels.
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Fig. 4. Performance of the prediction of the methods is evaluated based on two metrics,
RMSE and R2.

To evaluate the performance of the methods we compute the metrics of the
root mean square error (RMSE) and R2.

Figure 4 summarizes the result of RMSE and R2 metrics. Note that the per-
formance of the models appear to be very similar for most mention networks. In
Sect. 3, we verify that the growth of the eigenvalues for most networks is irregular.
It is therefore to some extent expected that the extrapolation method outper-
form the graph kernels. Next, we borrow the structural similarity index method
(SSIM) from the filed of image processing to measure the similarity between the
actual and the estimated adjacency matrices. (SSIM is widely applied in the
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field of image processing to compare the similarity between two images based
on the idea that pixels have strong inter-dependencies when they are spatially
close [11].) Unlike other techniques, such as RMSE, SSIM relies on the estimation
of point-to-point absolute errors.
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Fig. 5. Performance of the prediction of the methods is evaluated based on SSIM
method.

The results are shown in Table 2 and Fig. 5. Figure 5 summarizes the perfor-
mance for all methods using SSIM. In general, the extrapolation method tends
to outperform the other methods. Specifically, for 28 out of 31 networks (91%
of the total), the extrapolation method provides a distinct, if sometimes slight,
improvement. The Neumann kernel and the triangle closing combined provide
better estimates only for 3 networks.

Whenever the spectral extrapolation method outperforms the graph kernels,
better prediction seem to be explained by the method being able to consider
the irregular evolution of the eigenvalues. In general, note that the networks
considered are large enough so that only a small number of eigenvalues and
eigenvectors can be computed.
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Table 2. Spectral evaluation model performance analysis with SSIM.

Hashtag extrapol A2 exp(αA) (I− αA)−1 Best kernel or method

0 abortolegalya 0.97 0.98 0.97 0.97 A2

1 alianzasporlaseguridad 0.80 0.73 0.74 0.63 extrapol.

2 asiconstruimospaz 0.98 0.96 0.96 0.95 extrapol.

3 colombialibredefracking 0.97 0.96 0.96 0.96 extrapol.

4 colombialibredeminas 0.95 0.89 0.90 0.92 extrapol.

5 dialogosmetropolitanos 0.93 0.86 0.66 0.80 extrapol.

6 edutransforma 0.74 0.67 0.70 0.65 extrapol.

7 eleccionesseguras 0.98 0.96 0.96 0.95 extrapol.

8 elquedigauribe 0.98 0.96 0.97 0.96 extrapol.

9 frutosdelapaz 0.98 0.95 0.96 0.95 extrapol.

10 garantiasparatodos 0.93 0.90 0.90 0.88 extrapol.

11 generosinideologia 0.99 0.95 0.96 0.97 extrapol.

12 hidroituangoescolombia 0.95 0.93 0.93 0.93 extrapol.

13 horajudicialur 0.98 0.94 0.90 0.93 extrapol.

14 lafauriecontralor 0.98 0.96 0.96 0.96 extrapol.

15 lanochesantrich 0.98 0.94 0.94 0.94 extrapol.

16 lapazavanza 0.98 0.97 0.97 0.97 extrapol.

17 libertadreligiosa 0.95 0.89 0.89 0.92 extrapol

18 manifestacionpacifica 0.83 0.81 0.81 0.88 (I− αA)−1

19 plandemocracia2018 0.98 0.96 0.96 0.97 extrapol.

20 plenariacm 0.97 0.92 0.83 0.90 extrapol.

21 proyectoituango 0.99 0.96 0.96 0.96 extrapol.

22 reformapolitica 0.99 0.97 0.97 0.98 extrapol.

23 rendiciondecuentas 0.99 0.98 0.97 0.98 extrapol.

24 rendiciondecuentas2017 0.97 0.89 0.93 0.89 extrapol.

25 resocializaciondigna 0.95 0.87 0.87 0.81 extrapol.

26 salariominimo 0.99 0.97 0.97 0.98 extrapol.

27 semanaporlapaz 0.96 0.95 0.94 0.95 extrapol.

28 serlidersocialnoesdelito 0.91 0.91 0.90 0.92 (I− αA)−1

29 vocesdelareconciliacion 0.84 0.74 0.72 0.62 extrapol.

30 votacionesseguras 0.98 0.96 0.96 0.96 extrapol.

5 Conclusions

This paper applies the spectral evolution model to 31 Twitter mention net-
works. This model characterizes the evolution of each network in terms of the
eigen decomposition of its adjacency matrix. It has been verified that Twit-
ter mention networks follow the spectral evolution model. For most networks,
the eigenvectors remain approximately constant, while the spectra of the men-
tion networks grow irregularly. Their evolution can be predicted with the help
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different growth models. Our results shows that the extrapolation method out-
performs the kernel methods mainly due to the irregular evolution of the spectra.
Developing more refined models that use learning to predict the evolution of the
spectra of graphs remains an important direction for future research.
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