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Abstract. Identifying which genes are involved in particular biologi-
cal processes is relevant to understand the structure and function of a
genome. A number of techniques have been proposed that aim to anno-
tate genes, i.e., identify unknown biological associations between bio-
logical processes and genes. The ultimate goal of these techniques is to
narrow down the search for promising candidates to carry out further
studies through in-vivo experiments. This paper presents an approach
for the in-silico prediction of functional gene annotations. It uses existing
knowledge body of gene annotations of a given genome and the topolog-
ical properties of its gene co-expression network, to train a supervised
machine learning model that is designed to discover unknown annota-
tions. The approach is applied to Oryza Sativa Japonica (a variety of
rice). Our results show that the topological properties help in obtaining
a more precise prediction for annotating genes.

Keywords: Co-expression network · Topological properties · Oryza
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1 Introduction

Available genome data has grown exponentially in the last decade, mainly due to
the development of new technologies, including gene expression profiles generated
with RNA sequencing [17]. Intuitively, genes are said to co-express whenever
they are active simultaneously, indicating that they are associated to the same
biological processes. Co-expression networks have been used widely to predict
biological information (specific biological functions and processes) based on the
interactions of the genes [16,22,24,25]. The working hypothesis of correlated
expression implying a relevant biological relationship has resulted in a promising
strategy to perform functional genome annotation.

Co-expression networks are generally, represented as undirected, weighted
graphs built from empirical data. Vertices denote genes and edges indicate a
weighted relationship about their co-expression. Since co-expression networks
include all correlated expression patterns between genes, a detailed analysis of
the network topology –in addition to node-to-node relationships– may provides
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insights into the network structure and organization. An approach based on
co-expression networks ultimately provides additional information to build up
novel biological hypotheses. It remains an open challenge to develop models that
combine ideas from network theory and machine learning, and take advantage of
the co-expression network structure for predicting functional gene annotations.

This paper presents an approach for predicting gene annotations based on
the topological properties of the gene co-expression network of a given genome.
The main idea is to combine the co-expression information available for the
genome, the topological properties, and the body of known annotations (exper-
imentally verified). The goal is to predict unknown annotations for genes. By
taking advantage of the co-expression network structure, this approach aims to
exploit additional information for the prediction that helps to establish strong
functional associations between genes and the biological processes in which they
are involved.

The proposed approach is showcased to predict gene annotations for the
Oryza Sativa Japonica species, a variety of rice. The rice co-expression network is
built from information available at ATTED-II [4] and a body of annotations gath-
ered from RAP-DB [19]. The supervised machine learning technique XGBoost is
used for the prediction of 141 functional gene annotations. For each annotation,
a model with and without topological measures are trained. Their performance
is compared to identify how topological measures can improve the annotation
prediction in terms of precision. The experiments show that there are promising
candidates to carry out further studies through in-vivo experiments, i.e., there
exists set of genes that are consistently predicted to have a given annotation.

The remainder of the paper is organized as follows. Section 2 presents an
overview on gene annotation and techniques used to perform functional genome
annotation. Section 3 describes co-expression networks and a network-based app-
roach for predicting gene annotation. Section 4 presents a case study for the
Oryza Sativa Japonica species. Section 5 draws some conclusions and presents
future research directions.

2 Gene Annotation

The goal of gene annotation is to determine the structural organization of a
genome and discover sets of gene functions, i.e., the locations of genes and cod-
ing regions in a genome that determine what genes do [18,26]. Once a genome
is sequenced, it is annotated to understand its structure and how it encodes
biological function. Though several organism have been completely sequenced,
genome annotation remains a significant challenge, mainly due to its extreme
combinatorial nature.

Genome annotation focuses on two complementary processes. First, the
genome structure is defined, that is genes are identified and intergenic regions are
characterized from specific sequences that are associated with genomic structures
(particular promoter motifs or repetitive signatures). Second, putative functions
of genes are assigned to establish gene and, as a whole, genome functional char-
acterizations [10]. While genomic structure can be determined by the detection
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of specific genomic elements inserted in the sequence itself, genome functional
annotation is more laborious. It generally depends on several annotation strate-
gies that combine alignment-based information with experimental evidence asso-
ciated with gene functional predictions. Often extensive in-vivo experimentation
is required to gain certainty on processes associated to genes [28]. The rapid accu-
mulation nowadays of genome-wide data describing both, genome sequences and
functional properties of genes, has facilitated the novel development of integra-
tive approaches to target genome annotation.

Global analysis of similarity in gene expression patterns has been used to
infer specific regulatory networks by analysis of gene co-expression analysis. Dif-
ferent techniques and tools, mostly supported by statistical inference, have been
proposed to suggest putative biological processes to genes whose functional anno-
tation is partially or completely unknown [14,25].

3 Prediction Based on Co-expression Network Structure

Here gene co-expression networks are represented as undirected graphs where
each vertex identifies a gene and an edge the level of co-expression between two
genes.

Definition 1. Let V a set of genes, E a set of edges that connect pairs of genes
and w a weight function. A (weighted) gene co-expression network is a weighted
graph G = (V,E,w : E → R≥0).

The set of genes V in a co-expression network is particular to the genome
under study. The correlation of expression profiles between each pair of genes
is measured, commonly, with help of the Pearson correlation coefficient. Every
pair of genes is assigned and ranked according to a relationship measure, and a
threshold is used as a cut-off measure to determine E. The weight function w
denotes how strongly co-expressed are each pair of genes in V . For any pair of
genes u, v ∈ V , w(u, v) is usually inversely proportional to the measure of mutual
rank (MR) between genes u and v. Note that a value of 0 would be assigned to
the strongest connections [13].

There are gene co-expression network databases containing several expression
profiles obtained from cDNA microarrays and RNA sequencing. Each profile
indicates how gene expression is perturbed when the subject organism is exposed
to multiple types of stress (for example, to biotic and abiotic stresses). The
correlation of expression for a set of genes under multiple conditions may suggest
their functional relation, thus offering information on how genes can be related
in terms of biological function.

In an annotated gene co-expression network, each gene is associated with
the collection of biological functions to which it is related (e.g., through in-vivo
experiments).

Definition 2. Let A be a set of biological functions. An annotated gene co-
expression network is a gene co-expression network G = (V,E,w) complemented
with an annotation function φ : V �→ 2A.
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The network-based approach to gene annotation proposed in this paper
can now be explained in detail. Given an annotated co-expression network
G = (V,E,w) with annotation function φ, the goal is to use the information
represented by φ together with topological properties of G to obtain a function
ψ : S �→ 2A. Function ψ predicts associations between annotations and genes
based on a supervised machine learning technique.

The overall success of this approach is evaluated in two complementary ways.
On the one hand, this approach would be successful if higher precision is achieved
for a suggestion a ∈ ψ(v) to annotate gene v ∈ V , when compared to other
approaches (e.g., to a suggestion in which only the information represented by
φ and the edge structure of G are taken into account). On the other hand, this
approach would also be successful if genes v ∈ V are found for which ψ(v)\φ(v) �=
{}, meaning that new annotation suggestions have been found for the candidate
gene v. This latter situation is desirable in practice to reduce time and costs
associated to laboratory experimentation. In particular, for a biological function
a ∈ ψ(v), with ψ(v)\φ(v) �= {}, laboratory experimentation can then increase the
focus on specific biotic and abiotic stresses to see if gene v is actually associated
to the biological function a in the genome under study.

4 In-silico Experimentation with Oryza Sativa Japonica

This section describes an in-silico experimentation case study of gene annota-
tion prediction for Oryza Sativa Japonica (Osa). It follows the network-based
approach proposed in Sect. 3, and explains how the gene co-expression network
is built, how it is initially annotated, and how –with the help of topological
properties– machine learning techniques are used to improve gene annotation.

4.1 The Co-expression Network and Gene Annotations

The co-expression information used in this paper is taken from the ATTED-II
database [4,12,15]. The gene co-expression network G = (V,E,w) comprises
19 665 vertices (genes) and 553 125 edges. The weight function w : E �→ R≥0

measures the mutual rank (MR) between any pair of genes; it assigns smaller
values to stronger links. A MR threshold of 100 is used as the cut-off measure
for G, i.e., E contains edges e that satisfy w(e) ≤ 100.

The annotation information for G is taken from the RAP-DB [19] database,
a comprehensive set of gene annotations for the genome of rice. Among these
annotations, there are 899 for molecular function (i.e., molecular activities of
individual gene products), 187 for cellular components (i.e., location of the active
gene products), and 633 for biological processes (i.e., pathways to which a gene
contributes). It is important to note that genes may be associated to several
annotations in each category. Since this work is mainly focused on pathways and
large processes, only biological process annotations are consider. The annotation
function φ : V → 2A for G associates |A| = 615 annotations to |V ′| = 7478 genes,
where V ′ ⊆ V is the set of genes associated to at least one biological process.
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4.2 Topological Properties

Given the co-expression network G = (V,E,w), properties of its network struc-
ture are computed for gene annotation prediction. The topological measures
considered for each gene u are the following:

– degree: number of edges incident to u;
– eccentricity: maximum shortest distance from u to any vertex in its connected

component;
– clustering coefficient: ratio between the number of triangles (3-loops) that

pass through u and the maximum number of 3-loops that could pass through
it;

– closeness centrality: the reciprocal of the average shortest path length from
u;

– betweenness centrality: the amount of control that u has over the interactions
of other nodes in the network;

– neighborhood connectivity: the average connectivity of all neighbors of u;
– topological coefficient: the extent to which u shares neighbors with other

nodes.

These measures were computed with the help of Cytoscape [21], an open
source platform for visualizing and analyzing molecular interaction networks
and biological pathways.

4.3 Supervised Training

Two models are trained for predicting gene annotations, one per biological func-
tion. Namely, one in which the topological measures of G are used and another
one in which they are not. The next paragraphs describe how these models are
built, trained, and evaluated.

The dataset summarizes data for the 19 665 genes, 615 annotations, and
7 topological measures. It comprises 19 665 rows and 222 columns. For these
experiments, the dataset is heavily imbalanced since 77% of the annotations are
related to less than 10 genes each one. In order to counter such an imbalance,
two decisions are made. First, only annotations associated with at least 10 genes
are considered for prediction, reducing the number of annotations from 615 to
141. Second, the Synthetic Minority Over-sampling TEchnique (SMOTE) is used
to over-sample the minority class to potentially improve the performance of a
classifier without loss of data [7]. This technique derives the new samples of the
minority class from interpolation rather than extrapolation, in order to avoid
over-fitting problems.

A supervised machine learning technique for the annotation prediction is
used. In particular, the XGBoost implementation of gradient boosted decision
trees is used [8]. This technique has recently been dominating applied machine
learning competitions for structured or tabular data, and it has implementations
in many programming languages, including C++, Java, and Python. In the
experiments presented in this section, a Python implementation was used.
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Finally, k-fold cross validation is used in the training of the two models with
k = 50. The number of k is determined for statistical significance in the false
positive analysis prediction. The performance of the models is compared using
the accuracy, F1-score, and AUC ROC measures.

4.4 Annotation Prediction

Figure 1 presents a summary of the accuracy achieved by the two trained models
for predicting gene annotations. In particular, the results are depicted for 32
different annotations. The annotations are sorted in descending order by the

Fig. 1. Performance accuracy, F1-score, and AUC ROC measures for the prediction of
32 annotations with the two trained models (with and without topological measures).
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Table 1. Number of genes most frequently annotated as false positives for the 32
annotations by the model trained with topological measures. The ‘Max FP’ column
summarizes the number of times (out of a total of 50) such an annotation is suggested
for a gene, while the ‘FP’ column identifies the number of genes that are consistently
given such an annotation.

ID Biological process # Genes Max FP # FP

0006807 Nitrogen compound metabolic process 15 41 1

0006289 Nucleotide-excision repair 20 46 1

0006397 mRNA processing 17 48 1

0007017 Microtubule-based process 18 49 1

0070588 Calcium ion transmembrane transport 10 36 1

0006184 GTP catabolic process 49 47 1

0044267 Cellular protein metabolic process 25 49 1

0007186 G-protein coupled receptor protein signaling 11 50 1

0006281 DNA repair 62 50 2

0006754 ATP biosynthetic process 24 49 3

0006904 Vesicle docking involved in exocytosis 11 50 4

0055114 Oxidation-reduction process 870 47 5

0006886 Intracellular protein transport 135 50 19

0006855 Drug transmembrane transport 32 50 21

0006662 Glycerol ether metabolic process 28 50 27

0006888 ER to Golgi vesicle-mediated transport 16 50 29

0006259 DNA metabolic process 15 50 32

0007067 Mitosis 11 48 33

0008652 Cellular amino acid biosynthetic process 18 50 52

0030244 Cellulose biosynthetic process 23 50 64

0034968 Histone lysine methylation 11 50 93

0006812 Cation transport 62 50 96

0045454 Cell redox homeostasis 83 49 103

0006506 GPI anchor biosynthetic process 12 50 284

0007165 Signal transduction 104 50 370

0071805 Potassium ion transmembrane transport 24 50 570

0006357 Regulation of transcription from RNA polymera 12 50 1199

0006396 RNA processing 58 50 1212

0044237 Cellular metabolic process 75 50 1318

0006457 Protein folding 162 50 2358

0006952 Defense response 133 50 2679

0006096 Glycolysis 50 50 2875

performance difference between the models. This plot shows that the model
trained with the additional information of the topological measures can be more
reliable in these cases. The results for the remaining annotations are omitted,
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but in these other cases the additional information provided by the network
structure does not result in a better prediction performance.

Table 1 presents details about the prediction made by the model trained with
the topological data of the co-expression network. The annotations listed in this
table correspond to the same 32 annotations included in Fig. 1. For each anno-
tation, the table includes its gene ontology term (ID), its associated biological
process, and the total number of genes known to be associated with it in the
co-expression network. A false positive analysis is applied to the annotation pre-
dictions: the idea is to identify the genes that tend to be classified as a false
positive because they are the candidate genes on which lab experimentation can
focus on. The ‘Max FP’ column summarizes the number of times (out of a total
of 50) such an annotation is suggested for a gene, while the ‘FP’ column identifies
the number of genes that are consistently given such an annotation.

Note that the annotations in Table 1 are sorted in ascending order by the
number of genes most frequently classified as false positive. This set of genes
is considerably small for the first 12 annotations of the table and therefore can
be seen as good candidates for experimental verification. For example, the only
gene associated to the nitrogen compound metabolic process (0006807) is proline
dehydrogenase, identified as Os10g0550900, which is related to the functional
annotation proline catabolic process to glutamate (0010133).

5 Related Work and Conclusion

Complex network structure has been widely used for the enrichment of analy-
sis techniques from different perspectives and in different domains. A modest
summary of the enormous body of work for, mainly, biological predictions is
presented next.

The application of networks in biology has grown exceptionally in the last
decade due to the large amount of molecular interaction data available [5]. There
are two main types of biological networks that are a current focus of research.
The first group is of molecular networks. It includes protein interaction net-
works where proteins are represented as vertices that are connected by physical
interactions, metabolic networks where metabolites are vertices connected by
co-appearance in biochemical reactions, regulatory networks where connections
are regulatory relationships between transcription factors and genes, and RNA
networks. The second group is of genetic networks. It includes co-expression
networks, in which genes are vertices that are connected by similar expression
patterns, such as the ones studied in the present work. This latter group has
been used to identify the function of a large set of genes and their role in specific
biological processes in different species [5,25]. In particular, the co-expression
networks have helped to address the problem of identifying the role of the genes
in biological systems. This work takes a step forward in exploiting the rich struc-
tural property of a network with the goal of increasing annotation prediction
precision.

Studying the link prediction problem is one of the most common applications
of the topological properties of networks. Tan et al. [23] examine the role of
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network topology in predicting missing links from the perspective of information
theory. They present a practical approach based on the mutual information of
network structures. Naaman et al. [11] show that edges with similar network
topology, as defined by a combination of network measures having similar signs,
can be used to predict edge sign based on correlation measures on the network
topology.

In biological networks, the topological properties have been used for the pre-
diction of interactions between genes or proteins. Lobato et al. [2,3] use the
topology of biological interactomes for the prediction of interactions in biologi-
cal networks. Santolini et al. [20] use biochemical networks, with experimentally
measured kinetic parameters, to predict the impact of perturbation patterns in
biological interactome networks. They approximate perturbation patterns using
increasingly accurate topological models. Benstead-Hume et al. [6] explore com-
putational approaches to identify genes that have become essential in individual
cancer cell lines. They use machine learning techniques, the protein-protein inter-
action network, and the network topology to classify genes that can be essential
to human cancer processes.

Within the broader picture of network-based analysis techniques, there is
some recent work in other domains. For instance, Abeysinghe et al. [1] study
the topological properties of real-world electricity distribution networks at the
medium voltage level by employing the techniques from complex networks analy-
sis and graph theory. Jiang et al. [9] use large urban street networks for topologi-
cal analysis and show that these networks have the small-world property, but do
not exhibit scale-freeness. Zhang et al. [27] use topological properties to better
understand bus networks in large cities to optimize the bus lines and transfers.

This paper presented a network-based approach for annotation prediction of
genes. It uses the information of the co-expression network of the genome under
study to build a predictive model using machine learning techniques. When
trained with the topological measures as part of the data set, the model is shown
by a series of in-silico experiments to improve the accuracy, F1-score, and AUC
ROC in comparison to a model trained without the topological measures of the
co-expression network. Each pair of models is trained for predicting a particular
gene annotation. By measuring the number of genes most frequently classified as
false positive by the prediction model, a small number of genes is identified for 12
biological processes in Oryza Sativa Japonica: these genes are good candidates
for experimental verification.

As usual, significant work remains to be done. A next step is to perform
experimental evaluation in the laboratory to validate the in-silico predictions.
Also, more in-silico experimentation can be used to predict gene annotations in
other species, such as sugar cane.
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