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Preferential attachment with power law growth
in the number of new edges

Juan Romero', Andrés Salazar' and Jorge Finke?

Abstract— The Barabasi-Albert model is used to explain the
formation of power laws in the degree distributions of networks.
The model assumes that the principle of preferential attachment
underlies the growth of networks, that is, new nodes connects to
a fixed number of nodes with a probability that is proportional
to their degrees. Yet, for empirical networks the number of new
edges is often not constant, but varies as more nodes become
part of the network. This paper considers an extension to the
original Barabasi-Albert model, in which the number of edges
established by a new node follows a power law distribution with
support in the total number of nodes. While most new nodes
connect to a few nodes, some new nodes connect to a larger
number. We first characterize the dynamics of growth of the
degree of the nodes. Second, we identify sufficient conditions
under which the expected value of the average degree of
the network is asymptotically stable. Finally, we show how
the dynamics of the model resemble the evolution of protein
interaction networks, Twitter, and Facebook.

Index Terms— Preferential attachment, Harmonic number,
Riemann Zeta function, Lyapunov stability.

I. INTRODUCTION

The behavior of the degree distribution of a number of
empirical networks can be explained by the principle of
preferential attachment. Linear preferential attachment is the
basis for the formation mechanisms underlying the Barabasi-
Albert model [1], which assumes that new nodes attach to
a network by establishing a fixed number of new edges.
Moreover, the probability of connecting to a particular node
is directly proportional to the degree of that node. Past work
has focused on extending linear attachment to other linkage
mechanims, including sublinear and superlinear attachment
[6], [5]. All of these models, however, operate under the
assumption that as the network grows, the number of new
edges remains constant.

A more realistic scenario would consider that the rate of
new edges may vary over time. The work in [3] introduces
a model, in which the number of new edges follows a
distribution with support on a bounded set. Similarly, the
work in [4] proposes a model and characterizes the degree
distribution when the number of the new edges follows a
Poisson distribution. This work introduces a model in which
the probability that a new node connects to m nodes is
proportional to m™ for s > 0. The proposed mechanism
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assumes that the number of new edges established at any
time step depends on the set nodes that make up the network.

Our theoretical contributions are twofold. First, we iden-
tify conditions under which the probability distribution of the
degree of the nodes converges. In particular, we show that
the distribution converges if and only if s > 2. Second, we
characterize the stability properties of the expected average
degree of the network.

The remaining sections are organized as follows. Section 1
presents the formation mechanisms of the model and derives
the asymptotic behavior of the expected number of new
edges. Section 2 characterizes the degree dynamics of a node.
Section 3 characterizes the degree distribution. Section 4
analyzes the asymptotic behavior of the expected value of
the average degree. Section 5 provides sufficient conditions
that guarantee the stability of the average degree. Section 6
draws some conclusions and future research directions.

II. ATTACHMENT WITH POWER LAW GROWTH

Consider a series {G; },cn, where each undirected graph
G;(V;,E;) consist of a set of nodes V; and set of edges E;. For
t =0, let Go(Vy,Ep) be the initial graph with |Vy| = ng and
|Eo| = ly. Let g(z,i) describe the degree of node i at time 7.
Moreover, let M; be a random variable that describes the
number of edges established by a new node when attaching
to the network. The evolution of G; is based on the following
mechanisms:

(i) Growth: A new node is added to the set of nodes V,_;.

(ii) New edges: For s € RT, M, follows a probability

function

fi(m) = P[M; =m] = C(t)m™*, (1)

where C(r) represents the proportionality constant of the
distribution of new edges at time ¢.

(iii) Preferential attachment: For o € R™, the new node
connects to node i € V;_; with probability
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Figure 1 illustrates the dynamics of a network based on
the above mechanisms. According to mechanism (i), the
set of nodes grows by the continuous addition of a node
at every time step, so n(t) = |V;| = no-+t. According to
mechanism (ii), the growth of the set of edges follows a
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Fig. 1. Evolution of the network based on mechanisms (i) — (iii).

power law. The support of the probability function defined
in (1) is the set V,_1, so all realizations of M, are less than
or equal to n(r — 1). First, note that C(¢) satisfies

n(t—1)

Y m*=C()H(s), (3)

m=1

n(t—1)
1=Y Ct)ym*=C()
m=1
where

Y m @)

represents the generalized harmonic number of order s.
Second, note that H,(s) depends of the initial number of
nodes ng. As ¢ tends to infinity H,(s) exists if s > 2. Finally,
note that C(¢) = 1/H;(s) and

lim H,(s) = {(s), (5

t—voo

where {(s) = Z m~* is the Zeta-Riemann function.
m=1

The cumulative distribution function of M, is given by
Fu=P[M;, <m]=C(t)Hp(s),

where 1 <m < n(t)— 1. Figure 2 shows the complementary
cumulative distribution of new edges for three empirical
networks and the estimated value of s. For the protein interac-
tions, the network represents a proteome-scale map of human
protein-protein interactions. For the Twitter network, edges
represents follower-followee relationship between users. And
for Facebook, edges represent friendships [7].

The expected number of edges that the new node estab-
lishes at time ¢ is given by

1 n(t)
H(s) z::

m=1

1
m*(&*]):Ht(s_])7 (6)

0(t)=E[M] = ()

where 6(0) = 0. The following lemma characterizes the
asymptotic behavior of 6(z).

0.500F

0.100 ¢
0.050

1-Fpn

0.010 ¢
0.005F

0.001 ¢
5.x1074F

Fig. 2. Cumulative distribution of m for a protein interaction
network, Twitter, and Facebook.

Lemma I: If s > 2, then the expected number of new
edges satisfies:

Es—1)

b) 6(t) is a strictly increasing function.

a) limO(t) = ; and
f—3o0

Proof:

a) The result is an immediate consequence of (5) and (6).
b) Note that H;(s) = H,—1(s) + (no +t — 1)~*. Hence,

0(t)—06(r—1)

CHoa(s=D4(o+r—=1)"" H_i(s—1)
 Hi(s)+(no+t—1)"% H;_1(s)
_(no+t—1)"((no+t—1)H;1(s) —H;_1(s — 1))
N H} ((s)+Hy—1(s)(no+1—1)~5 '

Note that for r > m

t m 1

mS ms

ms—1°

Moreover, according to (4), (no+1t — 1)H;—(s) —
H,,I(S— 1) > 0.
Therefore,

0(t)—06(t—1)>0.

Next, we want to characterize the average of all instances
of O(¢) in the large ¢ limit. Based on Lemma 1, we want to
guarantee that the dynamics of the averages of 6(r) converge.
Consider the sequence 7 of instances of 6(r), given by

t 9 .
n=2¥. (7)
i=1

Lemma 2: 1If s > 2, the asymptotic behavior of the average
of the instances of 6(¢) satisfies

®)

limy =
t—>oo%

(s
&(s)
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Proof: The proof is based on Theorem 8.48 in [§].
Consider 7, = 0(t) — Cg(;)l) and p, =79 — C(g(;)l). We want to
show that p, — 0 as r — oo.

On the one side, note that

Els—1)
gls)

h+h+...+T=0(1)+---+6(t)—t 9)

and T4+ AT

= . .
Using Lemma 1, 7; — 0 as t — oo, so for each € > 0 we can
take N > 0 such that |7;| < € for all # > N. On the other side,
note that there exists a constant § > 0 such that |7;| <  for
all . Hence

(10)

Pr

T |+ ||+ + | Tn]

| < ;
T; T; 4| T Né
+|N+1|+|N+2|+ +‘t|<—+s,
t t
which implies that limsup, . |p;| < €. Therefore,
1
= S "

III. DEGREE DYNAMICS

We now calculate the functional form of the evolution of
the degree of a node.

Assumption 1: The number of nodes of the network grows
at a constant rate.

As a direct consequence of Assumption 1, the rate of
change of the degree of a node is proportional to probability
that a new node establishes an edge to that node. That is, for
any node i

dg(t,i)
dt

= o) 7 (i)

_ 6(0)g%(1,i)
Yijev, 8%, )
Note that the proportionality constant 6(¢) represents the
expected number of edges established by a new node. Note
also that for o = 1, the sum in (12) takes into account all
nodes, so the rate of change of the number of edges of node
i can be written as

Y

12)

dg(t,i) _ 8(1)g(t.i)
dt 210+22’j:1 o))
According to Lemma 1, for a large enough ¢, the terms in
the denominator can be neglected and

13)

drt 2t0* + 21y
1 g(t,)
-t 15
TR (15)

where 8% = ag(; )1). By integrating (15) and using the initial
condition g(f;,i) = 6(¢;), we obtain

st =00) (1) "

ti (16)
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Fig. 3. Degree dynamics for a node that attaches to a simulated

network at t =1 and the theoretical prediction for o = 0.3.
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Fig. 4. Degree dynamics for a node that attaches to a simulated
network at # =1 and the theoretical prediction for o = 1.

Similarly to case with ¢ = 1, when 0 < o < 1 the
denominator at (12) can be approximated by (¥ ey, 8(t, j))a
and when o > 1 by o (Y;ey, g(f,j)). Next, we specify
approximations of the functional forms of g.

e For 0 < a <1 (i.e., for sublinear preferential attach-

ment)

glt,) = (In(r)) 7

e For a =1 (i.e., for linear preferential attachment)

a7

g(t,i) ~1'/? (18)
o For a > 1 (i.e., for superlinear preferential attachment)

glt,i)~t (19)

Figures 3 and 4 show the behavior of g(¢,i) for a net-
work generated by the model with sublinear preferential
attachment (o = 0.3) and linear preferential attachment. Both
attachment mechanims satisfy s = 4, but only the latter
represents a scale free network [2].

IV. DEGREE DISTRIBUTION

Next, we want to specify the degree distribution of the
network py. Let Ay be the set of nodes with degree k. The
probability that a new node connects to node j € Ay is given
by
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Fig. 5. Complementary cumulative degree distribution for a sim-
ulated network (dotted curve) and the theoretical prediction (solid
curve) for oc = 0.3.
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Fig. 6. Complementary cumulative degree distribution for a sim-

ulated network (dotted curve) and the theoretical prediction (solid
curve) for a = 1.

_ Yiea 8%(1,0)

U= ,-g‘kn(l) © Yiev, 8%(1,))
kA
Y1 /%A)]
_ K%[A
 n(t)(g%)

where (g%) =Y ;> j*|A;|/n(t). The probability that a node
has degree k at time ¢ is given by [3],

o if k=1
Pk = (20)
% Py ifk> 1.
And the cumulative degree distribution is
k
Fe=Y py 1)
y=1

Figures 5 and 6 show the complementary cumulative
distribution for a network with sublinear (o = 0.3) and linear
attachment. Again, for both mechanisms s = 4.

Next, we turn our attention to the behavior of the average
degree of the network.

V. EXPECTED AVERAGE DEGREE

The expected degree of a node, selected uniformly at
random at time ¢, is equal to the expected average degree of
the network at time 7. We want to characterize the asymptotic
behavior of the expected average degree of the network. Let
L, represents the number of new edges established at time ¢.
For ¢ > 0, the expected number of new edges is given by

t
1(t)=E[L] =1+ Y 60). (22)
i=1

The first term of the right-hand of (22) corresponds to
the initial number of edges of G;; the second term to the
contribution by new nodes that add M; edges at time 7. Now,
let N; denote the total degree at time 7. The expected value
of N, is given by

e(t)=E[N, ] =2I(t) =2 (lo+ie(i)> . (23)
i=1

Furthermore, let D; denotes a random variable that de-
scribes the average degree of the network. For ¢ > 0 the
expected value of D; is given by

t
" 2lp+2Y 6(i)
elr i—1
dt)=E[Dj] = % = —-"—
(1) = EID] n(t) ny+t
Since 6(0) = 0, note that d(0) = % The following
theorem characterizes the asymptotic behavior of d(z).
Theorem 1: The asymptotic behavior of the expected av-
erage degree d(t) converges to

(24)

: _,86—1)
}erlod(t) =2 ) (25)
Proof: According to (1), note that
1 t
limd(t) = 2 lim D\ im Y 63). (6

t—>o0 t—oo pg + 1t t—oo ng +t =

Therefore, applying Lemma 2 in (26), we obtain (25). H

Figure 7 illustrates the asymptotic behavior of d(z). Fi-
nally, note that

2
dit+1)—d(t) = mw(r), 27
where
o(t) = <n09(t+ 1)—lo+10(t+1)— i@(l)) .
i=1
The term 16(r+1) —Y:_, 6(i) can be expanded as
O@F+1)—06(1))+...+(6(r+1)—06(z)). (28)

Since O is a strictly increasing function, then (28) is
positive, which suggests that the function @ is positive for
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t > 0 if the first term satisfies no8(¢r + 1) — Iy > 0. Taking
the minimum value of 6(z), we obtain no6(1)—Iy > O.
Therefore, if ng6(1) —Ily > 0, then d is strictly increasing.
This implies that if d(0) < 2n06(1) then d is a strictly
increasing function.
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Fig. 7. Asymptotic behavior of the average degree d(r) with s =4.

VI. STABILITY OF THE EXPECTED AVERAGE
DEGREE

Next, let d* = ZCC(E;)U and consider the set SUS¢, where

S =d(N) is the direct image set of d and

Se={(d"+e,d" —¢€):e>0}.
Clearly, SUS® CR.
Consider the function V : SUS® — Rg , defined by
V(d(r)) = |d(r) —d"].

Note that V(d(z)) = d* and

V(d(t)) > 0 for all ¢.

0 if and only if d(t) =

Proposition 1: The set $° is a non-empty invariant set.

Proof: Since d* € R, we can find a rational number
q € S° close enough to d*. In particular, if we take
d(0) = g we guarantee that d remains close to S¢. According
to Lemma 4.1 in [9], S¢ is a non-empty invariant set. In
particular, if € = 0 then d* € §°. [ |

The following proposition characterizes the monotonicity
of the function V over time.

Proposition 2: The function V : SUS® — Rg is a decreas-
ing function.

Proof: For the verification of the proposition we want to
prove that V(d(t+1)) —V(d(t)) < 0. Consider the following
cases:

(i) Suppose that d(0) < 2ny0(1), then d(¢) is an increasing
function. Therefore,

V(d(t+1))— V(d(t)) =d(t+1)— d() <0.

(ii) Suppose that d(0) >2np6(1), then d(¢) is a decreasing
function. Therefore,

V(d(t+1))— V(d(t)) =—d(t+1)+ d(t) <0.

|

Note that for all & > 0, there exists a 0; = & > 0,
such that all d(¢) € SUS®. First, if |d(r) —d*| > e,
then V(d(t)) > 8. Second, if |d(t) —d*| < &, then

V(d(t)) < 0. Together with the Proposition 1 and 2,
these bounds imply that d* is stable [10]. Moreover, because
V(d(t)) = 0 as t — oo, d* is globally asymptotically stable.
Figure 8 shows the convergence of the Lyapunov functions,
for various initial networks.
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Fig. 8. Evolution of V for different initials networks.

VII. CONCLUSIONS

This paper introduces a model that relaxes the original
assumption of the Barabasi-Albert model on how new edges
are established. We characterize the dynamics of the growth
of the degrees of the nodes and derive the asymptotic behav-
ior of the resulting cumulative distribution. This distribution
approaches a stationary distribution if and only if the scaling
exponent of the distribution of new edges is strictly greater
than two. We then show that the expected value of the
average degree converges to an equilibrium. Finally, we
prove that this equilibrium is globally asymptotically stable.
Understanding how different types of growth in the number
of new edges impact the evolution of the network remains a
future research direction.
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