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Abstract— Understanding cohesion and homophily in em-
pirical networks allows us build better personalization and
recommendation systems. This paper proposes a network model
that explains the emergence of cohesion and homophily as
an aggregate outcome at the group- and network-level. We
introduce two simple mechanisms that capture the underlying
tendencies of nodes to connect with similar and different others.
Our main theoretical result presents conditions on the network
under which it reaches high degrees of cohesion and homophily.

I. INTRODUCTION

Networks are generally composed of different types of
nodes. A node may represent a social actor or a piece
of information, and each type indicates a distinctive trait,
interest, or function. The concept of homophily captures the
tendency of nodes to connect with other nodes of the same
type (also known in epidemiology as assortative mixing) [1],
[2]. A number of studies identify homophily as one of the
main determinants of the structure of empirical networks [3].

Homophily is a global property of the network, measured
by how nodes of the same type connect to each other in com-
parison to a random mechanism for establishing links [4]. If
the number of links across groups is less than the expected
number of links due to the random mechanism (by orders of
magnitude), the network is said to exhibit homophily.

Unlike homophily, cohesion is an aggregate measure of a
group of nodes of the same type. It represents a degree of
membership to a group [5] and different groups hold different
values. A group in which members have a high fraction
of links to other group members is considered a cohesive
group [6].

It is an open challenge to characterize the evolution of
group cohesion and homophily. The most common approach
is to model local stochastic mechanisms that describe how
nodes establish and remove links. A number of models focus
on scenarios where the mechanisms depend on the type
associated to a node. Mechanism-based models provide a
framework to understand cause-effect relationships underly-
ing group cohesion and homophily and to characterize the
extent to which different types of nodes contribute to the
evolution of particular network structures.

This paper introduces a model that captures the dynamics
of the connections between nodes in a network composed
by two groups. Decision-making is driven by the assumption
that nodes of a particular type obey, with a given probability,
two simple mechanisms. These mechanisms encourage or
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discourage establishing links to similar others. We analyze
the dynamics of this model as a stochastic Markov process,
and find that transition probabilities of the state of cohesion
of a group are a function of the relative size of the group.

The rest of this paper is organized as follows. Section II
introduces the proposal model of interaction between nodes.
Section III presents the analytical results, which show how
the mechanisms impact the cohesion of a group. Finally,
Section IV presents some simulation results and identifies
conditions under which the network exhibits homophily.
The proofs of the lemmas and the theorem are available at
http://jfinke.org/research/publications.

II. THE NETWORK MODEL

Let N = {1, . . . , n}, n ∈ N, represent a set of nodes,
which are divided into two groups based on common traits
or interest. Nodes within the same group are said to be of the
same type. Let pi : N 7→ {0, 1} denote the type associated to
node i. The set Nℓ = {i ∈ N : pi = ℓ}, ℓ ∈ {0, 1}, groups
all nodes of type ℓ and nℓ = |Nℓ| denotes the group size.
Let n0 ≤ n1. We refer to N0 and N1 as the minority and
majority group, respectively.

A directed graph G = (N,M) captures the connections
between nodes, where M = {mij}, mij ∈ {0, 1}. In
particular, mij = 1 if there exists a link from node i to
node j. Links may be reciprocal, but there are no self-loops,
that is, mii = 0 for all i ∈ N . The set of neighbors of
node i, denoted by Qi = {j ∈ N : mij = 1}, refers to
the nodes to which node i establishes outgoing links. The
set Q′

i = {j ∈ Qi : pi = pj} refers to the neighbors of the
same type. Assume that each node has the same number of
neighbors q = |Qi|, but not necessarily the same number of
neighbors of the same type, that is, |Q′

i| 6= |Q′
j | for some

i, j ∈ N . Moreover, let 2 < q < n0. Since nodes of both
types have the same number of neighbors, the maximum
number of neighbors is bounded by the size of the minority
group. Note that establishing more than n0 − 1 links would
force the minority nodes to connect to majority nodes (i.e.,
the minority group could not be totally cohesive).

The state of the network at time t is defined as
x(t) = [x1(t), . . . , xn(t)]

⊤, where each element

xi =
|Q′

i|

q
(1)

represents the proportion of same-type neighbors of node i.
The decision by node i ∈ N to remove and establish links
follows two mechanisms:
M1. Node i disconnects from neighboring node j ∈ Qi

with pj 6= pi and connects to node k /∈ Qi.
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M2. Node i disconnects from neighboring node j ∈ Qi and
connects to node k /∈ Qi with pk 6= pi.

Mechanism M1 captures the tendency to remove links to
nodes of different type and to replace them with random links
to nodes of either type. Mechanism M2, in contrast, captures
the tendency to replace links to randomly selected neighbors
with links to nodes of a different type. Each mechanism
guarantees that the number of (outgoing) neighbors remains
constant. Together, M1 and M2 lead to the formation of
cohesive relationships between nodes of the same type, with-
out any form of centralized coordination. To characterize the
coupling between nodes consider the following definitions.

Definition 1: Node i is said to be type-neutral if xi=1/2;
non-cohesive if xi ≤ 1/2.

Note that a type-neutral node establishes half of its links to
nodes of the same type (i.e., |Q′

i| = q/2). This requires that
the total number of neighbors q is even. Note also that the
number of links to nodes of the same type of a non-cohesive
node satisfies |Q′

i| ≤ q/2.
Definition 2: The cohesion index of the group of type ℓ

is defined as

hℓ =
1

nℓ

∑

i∈Nℓ

xi (2)

Equation (2) represents the average fraction of connections
of nodes of type ℓ with other nodes of the same type1. Note
that the value of hℓ depends only on the neighbors of the
nodes of type ℓ. For the set Nℓ to form a cohesive group,
we expect the average number of links to neighbors of the
same type to be significantly larger than the average number
of links to neighbors of different type.

According to Definitions 1 and 2, if every node i ∈ Nℓ is
type-neutral, then the group Nℓ must have a cohesion index
hℓ = 1/2. However, note that the group Nℓ may satisfy
hℓ = 1/2 and not all nodes of type ℓ are type-neutral.

Definition 3: The group Nℓ shows total cohesion if
hℓ = 1. If hℓ = 0, then there is no group cohesion.

Total cohesion of a group means that all outgoing links of
its nodes are directed towards nodes within the same group.
If the two groups show total cohesion then the network G is
said to be segregated, meaning that each node connects only
to nodes of the same type (i.e., xi = 1 for all i ∈ N ).

At time t, let ei(t) denote an event that node i disconnects
from a node and connects to another. An event ei is of type 1
if the event is triggered by mechanism M1. The set E1(t)
denotes all possible events of type 1. These events only occur
for nodes with a state strictly less than 1 (if xi = 1, then
node i does not have a different-type neighbor from which
to disconnect). That is, for every ei ∈ E1, the state of node i
is 0 ≤ xi ≤ (q − 1)/q. Note that events of type 1 tend to
disconnect nodes from neighboring nodes of different type
and may increase (but not decrease) the cohesion index hℓ.

Similarly, the set E2(t) groups all possible events triggered
by mechanism M2. These events occur for a node with any
state (0 ≤ xi ≤ 1). Events of type 2 tend to connect nodes

1The definition of the index is equivalent to the one introduced by
Currarini et al [7].

to other nodes of different type and may decrease (but not
increase) the cohesion index hℓ.

Let ge(x) be a function that enables an event at
time t. If ei ∈ ge(x(t)), the next state of the net-
work is defined by x(t + 1) = fe(x(t)), where the op-
erator fe specifies the state transitions. In particular, if
ei ∈ ge(x(t)) such that node i disconnects from node j and
connects to node k, then

xi(t+ 1) =























xi(t) +
1

q
, if pi 6= pj and pi = pk;

xi(t)−
1

q
, if pi = pj and pi 6= pk;

xi(t), if pi 6= pj and pi 6= pk.

(3)

According to M1 and M2, it is not possible for nodes i,
j, and k to be of the same type. The enable function ge(x)
together with the state transition operator fe(x) define the
evolution of the network.

Consider the following assumption.
Assumption 1: If ei ∈ ge(x), then ei ∈ E1 with probabil-

ity ε. Furthermore, node i of type pi = ℓ satisfies:

(a) The cohesion index hℓ ∈ (0, 1).
(b) The selection of nodes k and j follows independent

uniform distributions.
Assumption 1 considers that events of type 1 occur with

probability ε and events of type 2 with probability 1 − ε.
Condition (a) requires that nodes belonging to a group with
either total or no cohesion do not rearrange their links.
If at time t′ the network satisfies h0(t

′), h1(t
′) ∈ {0, 1},

then there are no enabled events of either type. We model
the deadlock of the network dynamics by defining e0 such
that ∀t ≥ t′, e0 ∈ ge(x(t)), xi(t + 1) = xi(t

′) (i.e., the
state does not change over time). Condition (b) requires that
mechanisms M1 and M2 select which node to connect to and
disconnect from based random uniform distributions. Note
that establishing new links (or removing existing ones) does
not depend on the degree of the nodes or any other measure,
except its type. Assumption 1 allows us to study how the
set of all trajectories starting from a network in which every
node is type-neutral results in strong group cohesion for both
groups.

III. ANALYTICAL RESULTS

We first characterize the probabilities that node i re-
moves links and replaces them according to mechanisms M1
and M2. Second, we define the transition probabilities of the
cohesion index of group Nℓ and determine the probability
that group Nℓ shows no cohesion before total cohesion.

A. Probabilities of Node Decision-Making

Based to mechanisms M1 and M2, consider the proba-
bilities that node i selects nodes j and k of a particular
type. Let P [pi 6= pj, pi = pk] denote the probability
that node j is not but node k is of type ℓ. Moreover, let
P [pi = pj , pi 6= pk] denote the probability that
node j is of type ℓ but node k is not. And finally, let
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P [pi 6= pj , pi 6= pk] denote the probability that both nodes j
and k are not of type ℓ.

Lemma 1: The probabilities that node i, with pi = ℓ,
establishes links to other nodes (of the same or different
type), given event ei ∈ ge(x), are

P [pi 6= pj , pi = pk] =







ε
nℓ − qxi − 1

n− q − 1
, if xi < 1;

0, otherwise.
(4)

P [pi = pj , pi 6= pk] = (1− ε) xi (5)

P [pi 6= pj , pi 6= pk] =











1− ε
nℓ − qxi − 1

n− q − 1
− (1− ε) xi,

if xi < 1;
0, otherwise.

(6)

Equations (4)-(6) characterize the probability with which
the transition operator fe satisfies each conditional (see (3)).
Using (4), if ε = 0 (i.e., if events of type 1 are not enabled),
then P [pi 6= pj, pi = pk] = 0. And according to (5),
if ε = 1 (i.e., if events of type 2 are not enabled), then
P [pi = pj , pi 6= pk] = 0.

Fig. 1 depicts (4) and (5) as a function of xi. The
black and grey lines intersect at

(

xℓ, (1− ε)xℓ
)

. Consider
0 < xℓ < 1. Note that if node i satisfies xi < xℓ, then
P [pi = pj , pi 6= pk] < P [pi 6= pj , pi = pk]. That is, the
probability that node i disconnects from a node of different
type and connects to a node of the same type is higher
than the probability that node i disconnects from a node
of the same type and connects to a node of different type.
Consequently, the state of node i is more likely to increase
than to decrease. Note also that if xi > xℓ, then xi is more
likely to decrease than to increase.

B. Transition Probabilities between Group Cohesion Indices

We apply Lemma 1 to characterize the transition prob-
abilities between cohesion indices for a group. Based on
Definition 2 and (3), if ei ∈ ge(x) and pi = ℓ, the cohesion
of group Nℓ at time t+ 1 is given by

hℓ(t+ 1) =



















hℓ(t) +
1

qnℓ

, if pi 6= pj and pi = pk;

hℓ(t)−
1

qnℓ

, if pi = pj and pi 6= pk;

hℓ(t), if pi 6= pj and pi 6= pk.

(7)

Note that updates in the value of group cohesion depend on
the size of the group. Now, let cℓ = qnℓ + 1 and

Hℓ =
[

w1, w2, . . . , wcℓ−1, wcℓ

]⊤
(8)

be a vector containing all possible values of group cohe-
sion, represented by w1, . . . , wcℓ . Let u be the position of
wu = (u − 1)/(qnℓ) in Hℓ. The transition probabil-
ity between cohesion indices wu and wv is defined as
πuv = P [hℓ(t + 1) = wv|hℓ(t) = wu]. Based on (7), we
know that πuv = 0 for v = u±k, k > 1. Next, we specify the
transition probabilities for each group such that u ≥ 1 and
v ∈ {u−1, u, u+1}. Note that

∑

v∈{u−1, u, u+1} πuv = 1.
In particular, according to Assumption 1(a) if u ∈ {1, cℓ},
then wu ∈ {0, 1} and no events of type 1 or 2 can occur.

Fig. 1. Probabilities that a node of type ℓ (i.e., node i with pi = ℓ)
disconnects from and connects to different types of nodes.

Thus, πuv = 1 for v = u and πuv = 0 for v 6= u. In other
words, {w1} and {wcℓ} are closed subsets with no transition
to other cohesion indices {w2, . . . , wcℓ−1}, meaning that w1

and wcℓ are absorbing cohesion indices.
Next, let Tℓ = {w2, . . . , wcℓ−1} denote the set of non-

absorbing cohesion indices. Moreover, let the transitions
probabilities from the cohesion index wu ∈ Tℓ to adjacent
cohesion indices (i.e., from wu to wv , v = u±1) be denoted
by π̄u = πu(u−1) and π̂u = πu(u+1).

Lemma 2: The cohesion index wu ∈ Tℓ decreases with
probability

π̄u = (1− ε) wu (9)

and the probability that the cohesion index wu increases is
bounded by

π̂u ≥ min{π̂u} =































ε
nℓ − qwu − 1

n− q − 1
,

if u ∈ {2, . . . , cℓ − nℓ − 1};

ε
nℓ − q

n− q − 1
,

if u ∈ {cℓ − nℓ, . . . , cℓ − 1}.

(10)

π̂u ≤ max{π̂u} = ε
nℓ − 1

n− q − 1
(11)

According to Lemma 2, the transition probability π̄u

depends on both the current cohesion index wu and the
probability ε, while the transition probability π̂u depends on
the current index wu, the probability ε, and the group size nℓ.
Equations (10) and (11) define bounds on the probability π̂u.

Note that the transition probabilities do not depend on
time, which allows us to characterize the evolution of the
structure of the network as a homogeneous discrete-time
Markov chain [8]. The transition diagram for the cohesion
indices is shown in Fig. 2. If u ∈ {2, . . . , cℓ − 1}, then the
probability πuu = 1 − π̂u − π̄u. Otherwise, if u = 1, then
π̂1 = 0, and if u = cℓ, then π̄cℓ = 0.

Remark 1: Using (10) and (11), because q > 2, we know
that for any index wu ∈ Tℓ, min{π̂u} < max{π̂u} holds
with strict inequality.

Next, we show how the transition probabilities defined
in Lemma 2 evolve with respect to the current cohe-
sion index wu. First, consider the probability π̄u (de-
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fined by (9)). It can be shown that if ε < 1, then
0 < π̄2 < · · · < π̄cℓ−1 < 1 − ε. That is, π̄u is
strictly increasing over Tℓ (see the grey curve in Fig. 3).
Second, consider the lower bound on the probability π̂u

(defined by (10)). It can be shown that if ε > 0, then
min{π̂2} > · · · > min{π̂cℓ−nℓ

} = · · · = min{π̂cℓ−1}.
That is, min{π̂u} is decreasing over Tℓ (see the black solid
curve in Fig. 3). Third, consider the upper bound on the
probability π̂u (defined by (11)). Note that max{π̂u} does
not depend on the current cohesion index. Therefore, we
know that max{π̂u} is constant (see the black dashed line
in Fig. 3).

C. Markov Chain Analysis

We use the transition probabilities of Lemma 2 to ob-
tain the probability that the Markov chain visits one of
the closed set before the other (based on a similar ar-
gument as in [9, p. 386]). The probability that a chain
starting at wu ∈ Tℓ reaches the cohesion index w1 be-
fore wcℓ is denoted by αu = P [tu1 < tucℓ ], where
tu1 = min{t > 0 : hℓ(0) = wu, hℓ(t) = w1} and
tucℓ = min{t > 0 : hℓ(0) = wu, hℓ(t) = wcℓ}. Note that
α1 = 1 and αcℓ = 0.

Theorem 1: The probability that group Nℓ, starting at
wu ∈ Tℓ, shows no cohesion before total cohesion is

αu =
u
∏

k=2







1 − 1

1 +

cℓ−1
∑

i=k

i
∏

j=k

π̄j

π̂j






(12)

Theorem 1 characterizes the probability that the first
time a chain enters w1 is less than the first time it enters
wcℓ , starting from wu ∈ Tℓ. Due to the bounds on the
probability that the cohesion index wu ∈ Tℓ increases ((10)
and (11)), (12) is also bounded. For the group Nℓ and
u ∈ {2, . . . , cℓ − 1} we have that

αu ≥ min{αu} =

u
∏

k=2







1 − 1

1 +

cℓ−1
∑

i=k

i
∏

j=k

π̄u

max{π̂u}







αu ≤ max{αu} =

u
∏

k=2







1 − 1

1 +

cℓ−1
∑

i=k

i
∏

j=k

π̄u

min{π̂u}







Based on Remark 1, we know that for any index
wu ∈ Tℓ, min{αu} < max{αu} holds with strict in-
equality. Moreover, it can be shown that if 0 < ε < 1,
then 1 > min{α2} > · · · > min{αcℓ−1} > 0 and
1 > max{α2} > · · · > max{αcℓ−1} > 0. That is, the
bounds on αu are strictly decreasing. Fig. 4 evaluates the
upper and lower bounds of αu as a function of wu. The
shaded region represents the difference between the two
bounds.

IV. SIMULATION RESULTS

Next, we consider different scenarios for the evolution of
the network. In the first scenario, suppose that Assumption 1
holds. We compare theoretical and simulation results of the

w1 w2 w3 wcℓ−1 wcℓ

1− π̂1

π̂1 π̂2 π̂cℓ−1

π̄3π̄2

1− π̂2 − π̄2 1− π̂3 − π̄3 1− π̂cℓ−1 − π̄cℓ−1

π̄cℓ

1− π̄cℓ

Fig. 2. Transition diagram for the cohesion indices for group Nℓ (under
Assumption 1, π̂1 = π̄cℓ

= 0).

Fig. 3. Probabilities that the cohesion index wu ∈ Tℓ for group Nℓ

increases or decreases.

transition probabilities of the cohesion index of each group
(defined by (9)-(11)). Let q = 4, n0 = 10, and n1 = 50.
Figs. 5-8 show the estimated values and the theoretical
predictions for ε = 1/2. In particular, Figs. 5 and 6 give
insight into the majority group. The box plots represent the
estimates of the probabilities π̄u and π̂u as a function of
of wu, for u ∈ {(c1 + 1)/2, . . . , c1 − 1}. Figs. 7 and 8
illustrate the estimates of the probabilities π̄u and π̂u as a
function of wu, for u ∈ {2, . . . , (c0+1)/2}, for the minority
group. For both groups, the theoretical value coincides with
the average estimate of the probability π̄u (based on 50
simulation runs). Moreover, all estimates of π̂u are within
the bounds established by (10) and (11).

In the second scenario, suppose that nodes that belong to
a group showing either total or no cohesion may rearrange
their links.

Assumption 2: If ei ∈ ge(x), then ei ∈ E1 with probabil-
ity ε. Furthermore, node i of type pi = ℓ satisfies:

a. The cohesion of the group of node i lies in the range
0 ≤ hℓ ≤ 1.

b. Nodes k and j are selected based on independent
random uniform distributions.

Note that Assumption 2 relaxes Assumption 1. Under
Assumption 2, the cohesion indices representing total and
no cohesion are no longer absorbing indices. Let G(0)
be a network in which every node is type-neutral and
suppose that Assumption 2 holds. First, consider a network
with q = 4, n1 = 50 and n0 ∈ {5, 10, . . . , 50}. Let
ε = 1/2. Fig. 9 shows the average cohesion indices for the
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Fig. 4. Bounds on αu as a function of wu.
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Fig. 5. Probability that cohesion index for the majority group decreases
as a function of the current cohesion index wu ∈ T1.

0.50 0.55 0.59 0.64 0.68 0.73 0.77 0.82 0.86 0.91 0.95 1.0

0.40

0.42

0.44

0.46

0.48

Fig. 6. Probability that cohesion index for the majority group increases as
a function of the current cohesion index wu ∈ T1.

majority and minority nodes as a function of group size.
For any value n0/n1 < 1 the majority group reaches an
average cohesion index above 1/2. Moreover, the greater
the ratio n0/n1, the smaller the average cohesion index of
the majority group. The opposite is true for the minority
group. Fig. 10 (Fig. 11) shows the average cohesion index
and the value of xℓ for the majority group (for the minority
group, respectively). Remember that xℓ refers to the inter-
section between P [pi 6= pj , pi = pk] (defined by (4)), and
P [pi = pj , pi 6= pk] (defined by (5)). The small difference
between the average cohesion index and xℓ suggests a direct
relationship between the probability of connecting to a node
of a particular type and the resulting cohesion of the group.

Second, consider q = 4, n1 = 50 and n0 = 10. Fig. 12
shows the average cohesion indices for both groups as a
function of ε. The higher the value of ε, the stronger the
average group cohesion. Note that if 0 < ε < 1, then the
average cohesion index for the minority group is always less
than for the majority group. Note also that if ε = 0, then
event ei ∈ ge(x) is always of type 2. That is, the state of
node i may decrease, but not increase. Moreover, if node i

0.025 0.075 0.13 0.18 0.23 0.28 0.33 0.38 0.43 0.48

0.00

0.05

0.10

0.15

0.20

0.25

Fig. 7. Probability that cohesion index for the minority group decreases
as a function of the current cohesion index wu ∈ T0.

0.025 0.075 0.13 0.18 0.23 0.28 0.33 0.38 0.43 0.48

0.05
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0.07

0.08

0.09

0.10

0.11

Fig. 8. Probability that cohesion index for the minority group increases as
a function of the current cohesion index wu ∈ T0.
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1.0

Fig. 9. Average cohesion index for group Nℓ.
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0.9

Fig. 10. Average cohesion index for the majority group and x1.

reaches the state xi = 0, then the set the neighbors of node i
remains fixed (because the probability that node i redirects
a link to other node of its group towards a node of the other
group is P [pj = pi, pk 6= pi] = 0). Therefore, according
to (2), if ε = 0 then the cohesion index hℓ may decrease,
but not increase. Moreover, if xi = 0 for all i ∈ Nℓ, then
group Nℓ shows no cohesion (i.e., hℓ = w1 = 0) and the
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Fig. 11. Average cohesion index for the minority group and x0.
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Fig. 12. Average cohesion index of the type ℓ as function of ε.

cohesion index w1 is an absorbing index. Similarly, if ε = 1,
then event ei ∈ ge(x) is always of type 1. That is, the state
of node i may increase, but not decrease. Moreover, if node i
reaches the state xi = 1, then the set of neighbors of node i
remains fixed (because the probability that a node i redirects
a link to other node of other group towards a node of its
group is P [pj 6= pi, pk = pi] = 0). Therefore, according
to (2), if ε = 1 then the cohesion index hℓ may increase, but
not decrease. Moreover, if xi = 1 for all i ∈ Nℓ, then the
group Nℓ shows total cohesion (i.e., hℓ = wcℓ = 1) and the
cohesion index wcℓ is an absorbing index.

Third, we follow a similar argument as in [4, p. 88] to
evaluate whether the network exhibits homophily based on
the two types of nodes. A network shows no homophily when
nodes of different types establish connections regardless of
their type. Therefore, for a network with no homophily the
probability that the first end of a given link is to a node of
type pi and the second end to a node of type pj 6= pi (or
viceversa) is

πcg =
2n0n1

n2

where nℓ/n is the probability that node i belongs to
the group Nℓ. If the fraction of cross-group links is
significantly less than πcg, then the network exhibits
homophily. Consider a network with q = 4, n1 = 50 and
n0 ∈ {5, 10, . . . , 50}. Fig. 13 shows the values of πcg and
the average fraction of cross-group links of the simulated
network when ε = 1/2. Note that the difference between
the two curves is insignificant, which suggests that if
ε = 1/2, then the network shows no homophily
regardless of the relative size difference between
groups. Fig. 14 illustrates the resulting homophily when
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Fig. 13. Average fraction of cross-group links when ε = 1/2.
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Fig. 14. Average fraction of the cross-group links when ε = 9/10.

ε = 9/10. Note that the average fraction of cross-group
links is significantly less than πcg.
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