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Abstract— Network formation models explain the dynamics
of the structure of connections using mechanisms that operate
under different principles for establishing and removing edges.
The Jackson-Rogers model is a generic framework that applies
the principle of triadic closure to growing networks. Past work
describes the asymptotic behavior of the degree distribution
based on a continuous-time approximation. Here, we introduce
a discrete-time approach that provides a more accurate fit of the
dynamics of the in-degree distribution of the Jackson-Rogers
model. Furthermore, we characterize the limit distribution and
the expected value of the average degree as equilibria, and
prove that both equilibria are asymptotically stable.

I. INTRODUCTION

Power laws describe probability distributions of the de-
grees of nodes in social, biological, and information networks
[1], [2]. To gain insight into the underlying dynamics, a
common approach has been to derive mathematical repre-
sentations of mechanisms responsible for such distributions.
Preferential attachment refers to a class of mechanisms,
in which the probability that a new node connects to
existing nodes is proportional to their degree [3]. Based
on preferential attachment, the work in [4] introduces the
Albert-Barabasi model, which generates power law degree
distributions with a scaling exponent β = 3. Extensions
to the Albert-Barabasi model include local and non-linear
variations to the original attachment rule [5]–[7]. Yet, none of
these preferential attachment models recreate the clustering
properties of many empirical networks [8].

To address this limitation, the work in [9] introduces
the Jackson-Rogers model based on the principle of triadic
closure. The model uses three mechanisms to explain the
formation of clustering. First, a new node selects r target
nodes and connects to each of them with probability pr.
Second, the new node establishes additional edges to c
neighbors of the target nodes with probability pc. And
third, a total of n nodes establish edges to the new node.
Using a continuos-time approximation, the authors in [9]
show that for large networks, the in-degree distribution of
the Jackson-Rogers model converges to a power law with
β = 2 + rpr

cpc
. Furthermore, as rpr

cpc
→ 0, the Jackson-

Rogers model can be viewed as a network model with
indirect preferential attachment. In such cases, triadic closure
increases the probability that the edges to the neighbors of
the target nodes are directed to nodes with a high in-degree.

There are a number of variations to the original mech-
anisms of the Jackson-Rogers model [10], [11]. The work
in [11] considers the effects of reciprocal edges on power law

distributions. It shows that as the network grows, reciprocity
and clustering can be characterized as equilibria that are
asymptotically stable. Stability of these equilibria means
that for all initial network configurations, the two properties
remain close to their convergence value for all time. To the
best of our knowledge, the stability of the degree distribution
of the Jackson-Rogers model has not been studied.

The contributions of this paper are the following. First, we
use a discrete-time approach to characterize the probability
that a randomly selected node has a particular in-degree
(Theorem 1). Second, we show that the dynamics of the
in-degree distribution converge to stationary distributions
(Corollary 1). This corollary holds for the Jackson-Rogers
model and for any network model where the number of
edges grows linearly with time (e.g., for the Albert-Barabasi
model). Unlike [12], we allow new nodes to have a non-
zero in-degree (i.e., the model satisfies n 6= 0). Third,
we characterize the complementary cumulative in-degree
distribution as an invariant set and show that this set is
asymptotically stable. Finally, we show that the value of the
expected average in-degree is also asymptotically stable.

The remainder of this paper is organized as follows.
Section II characterizes the in-degree distribution of the
model. Section III presents the stability properties. Sec-
tion IV presents simulation results. Section V draws some
conclusions and future work.

II. ASYMPTOTIC BEHAVIOR OF THE IN-DEGREE
DISTRIBUTION

Let I denote an index set of non-negative integer numbers.
Consider a sequence G = {Gi}i∈I , where Gt = (Vt, Et)
represents a directed network at time t ≥ 0 with set of
nodes Vt and set of edges Et ⊆ Vt × Vt. Let Kt denote
a random variable that characterizes the in-degree of a
node selected uniformly at random at time t. Moreover, let
Pt(k) = P (Kt = k) denote the probability that a realization
of Kt equals k. The cumulative distribution function of the
in-degree of the nodes of Gt is denoted by Ft(k) = P (Kt <
k) =

∑
x<k Pt(x). Moreover, F c

t (k) = P (Kt ≥ k) =
1−Ft(k) denotes the complementary cumulative distribution
function.

The Jackson-Rogers model uses three mechanisms to
establish new edges [9]:

M1 Random attachment: A new node chooses r target
nodes, selected uniformly at random from the set of
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nodes in Vt−1, and connects independently to each of
them with probability pr.

M2 Triadic formation: Of the union of the outgoing neigh-
bors of all target nodes, the new node chooses c nodes,
selected uniformly at random, and connects indepen-
dently to each of them with probability pc.

M3 Network response: A total of n nodes, selected uni-
formly at random from the set of nodes Vt−1, connect
to the new node.

Mechanism M1 indicates that the new node tries to con-
nect to r target nodes. The neighbors of these nodes are the
support set for the selection process of mechanism M2. Note
that mechanism M3 guarantees that the in-degree of the new
node is equal to n.

To ensure a well-defined network formation process, con-
sider the following assumptions:

A1 The number of nodes in the initial network satisfies n0 ≥
r + c.

A2 Mechanism M3 satisfies 0 ≤ n ≤ n0.

Assumption A1 guarantees that the node added at t = 1
can connect to up to r+c nodes. Assumption A2 guarantees
that the number of edges established due to the response of
the network is at most n0.

Let Rt and Ct denote random variables that characterize
the number of edges established by a new node due to M1
and M2. Each mechanism follows a Bernoulli process, so Rt

and Ct are binomially distributed variables with expected
values E[Rt] = rpr and E[Ct] = cpc. Let Mt = Rt +
Ct represent a random variable that characterizes the total
number of edges established by the new node through both
mechanisms. Because Rt and Ct are independent, E[Mt] =
E[Rt] + E[Ct] = rpr + cpc. Let m = rpr + cpc + n.

Next, let πt(k) denote the probability that the new node
connects to a node of in-degree k. We know that

πt(k) =
rpr
nt−1

+
kcpc
nt−1m

(1)

where nt = |Vt|. The first term of eq. (1) represents the
probability that the new node connects to a node of in-
degree k through mechanism M1. The second term represents
the probability that the new node connects to a node of in-
degree k through mechanism M2 [9], [13].

We use the notion of asymptotic equivalence between two
real sequences to guarantee the existence of limt→∞ Pt(k)
for k ≥ n and to specify the limit distribution of the in-
degree of the network.

Lemma 1: Let {st} and {ut} be two equivalent sequences
of positive real numbers, denoted by st ∼ ut. That is,
limt→∞ st/ut = 1. If limt→∞ ut = L < ∞, then
limt→∞ st = L. Moreover, if vt ∼ wt, then st+vt ∼ ut+wt.

Proof: First, if st ∼ ut, then for all ε > 0 there
exists T1 ∈ N such that for all t > T1,

∣∣∣ stut
− 1
∣∣∣ < ε. If

limt→∞ ut = L, then for all ε > 0 there exists T2 ∈ N such

for all t > T2, |ut − L| < ε. So

|st − L| ≤ |st − ut|+ |ut − L|
< |st − ut|+ ε

= |ut|
∣∣∣∣ stut − 1

∣∣∣∣+ ε

< (ε+ L)ε+ ε = ε′

Therefore, for all ε′ > 0, there exists T = max{T1, T2} such
that for all t > T , |st − L| < ε′.

Second, because {st}, {ut}, {vt} and {wt} are sequences
of positive real numbers, if st

ut
< vt

wt
, then

st
ut

<
st + vt
ut + wt

<
vt
wt

Since st ∼ ut and vt ∼ wt, applying the Squeeze Theorem,
we have

lim
t→∞

st + vt
ut + wt

= 1

That is, st + vt ∼ ut + wt. The same reasoning applies for
vt
wt
≤ st

ut
.

The following theorem guarantees that as the network
grows the probability of the in-degree distribution of the
Jackson-Rogers model converges.

Theorem 1: As t tends to infinity, the limit of Pt(k) exists
for all k ≥ n.

Proof: First, we determine a recursive expression for
Pt(k) for all k ≥ n. According to eq. (1), we know that the
expected number of nodes of in-degree k is

πt(k)nt−1Pt−1(k) =

(
rmr +

kcpc
m

)
Pt−1(k) (2)

Using eq. (2), the expected number of nodes of in-degree
k > n is

ntPt(k) = (nt−1 − πt(k)nt−1)Pt−1(k)

+ πt(k − 1)nt−1Pt−1(k − 1)

=

(
nt−1 − rpr −

kcpc
m

)
Pt−1(k)

+

(
rpr +

(k − 1)cpc
m

)
Pt−1(k − 1) (3)

That is, at time t, the expected number of nodes of in-degree
k > n is equal to the difference between the expected number
of nodes of in-degree k and the expected number of nodes
of in-degree k selected at time t− 1 by mechanisms M1 or
M2, plus the expected number of nodes of in-degree k − 1
that establish an edge with the new node.

Now, because n nodes establish an edge to the new node,
the expected number of nodes of in-degree k = n is

ntPt(n) = nt−1Pt−1(n)− πt(n)nt−1Pt−1(n) + 1

=
(
nt−1 − rpr −

ncpc
m

)
Pt−1(n) + 1 (4)

The first term represents the difference between the expected
number of nodes of in-degree n at time t−1 and the expected
number of nodes of in-degree n that establish at time t an
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edge with the new node. The number 1 accounts for the new
node attaching to the network with in-degree n.

Second, using eqs. (3) and (4), we proceed by induction
over k to guarantee the existence of limt→∞ Pt(k). Consider
k = n as the base case. Using eq. (4), note that Pt(n) can
be expressed using the recurrence

Pt(n) =
1

nt

(
nt−1 − rpr −

ncpc
m

)
Pt−1(n) +

1

nt

It can be shown by induction that for b = 1 + rpr + ncpc

m
and t ≥ 0

Pt(n) =
(bP0(n)− 1)Γ(n1)Γ(nt+1 + b)

bΓ(n1 − b)Γ(nt+1)
+

1

b
(5)

where Γ(·) denotes the gamma function. According to as-
sumption A1, eq. (5) is well-defined. Because b > 0, note
that

Γ(nt+1 − bbc) ≤ Γ(nt+1 − b) ≤ Γ(nt)

where b·c denotes the floor function. Applying the Squeeze
Theorem, we have

lim
t→∞

Γ(nt+1 − b)
Γ(nt+1)

= 0

and
lim
t→∞

Pt(n) =
m

m(1 + rpr) + ncpc

Now, assume that limt→∞ Pt(k) exists for all k > n.
Using eq. (3), we get

ntPt(k + 1) =

(
rpr +

kcpc
m

)
Pt−1(k)

+

(
nt−1 − rpr −

(k + 1)cpc
m

)
Pt−1(k + 1) (6)

Because the number of edges that new nodes establish to
existing nodes is bounded by r + c, for k ≥ n and a large
enough t, we know that Pt−1(k) ∼ Pt(k) and Pt−1(k+1) ∼
Pt(k+ 1). Using Lemma 1 and eq. (6), for a large enough t(

1 + rpr +
(k + 1)cpc

m

)
Pt(k + 1) ∼

(
rpr +

kcpc
m

)
Pt(k)

Based on the inductive hypothesis, we know that
limt→∞ Pt(k) exists, so

lim
t→∞

Pt(k + 1) =
rpr + kcpc

m

1 + rpr + (k+1)cpc

m

lim
t→∞

Pt(k)

Therefore, limt→∞ Pt(k) exists for all k ≥ n.

We use Theorem 1 to characterize the in-degree distribu-
tion of the network.

Corollary 1: If k ≥ n, then the asymptotic behavior of the
expected complementary cumulative in-degree distribution
satisfies

F c
∞(k) =


Γ(k+ mrpr

cpc
)Γ(n+

m(1+rpr)
cpc

)
Γ(n+ mrpr

cpc
)Γ(k+

m(1+rpr)
cpc

)
if cpc 6= 0

1−
(

rpr

1+rpr

)k−n
if cpc = 0

Proof: Let P∞(k) = limt→∞ Pt(k). Using Theorem 1,
we know that

P∞(k) =


rpr+

(k−1)cpc
m

1+rpr+ kcpc
m

P∞(k − 1) if k > n

1
1+rpr+ ncpc

m+n
if k = n

Note that P∞(k) can be expressed in terms of a falling
factorial as

P∞(k) =
1

rpr + kcpc

m

k∏
j=n

rpr + jcpc

m

1 + rpr + jcpc

m

Using the gamma function representation, the above expres-
sion can be written as

P∞(k) =


mΓ(k+ mrpr

cpc
)Γ(n+

m(1+rpr)
cpc

)
cpcΓ(n+ mrpr

cpc
)Γ(k+

m(1+rpr)
cpc

)
if cpc 6= 0

1
1+rpr

(
rpr

1+rpr

)k−n
if cpc = 0

(7)

Because F c
∞(k) = P [K∞ ≥ k] = 1 −

∑k−1
j=n P∞(j), using

eq. (7) we get the desired result.
The next section characterizes the expected average in-

degree of the network, which we require to prove the stability
properties of the in-degree distribution.

III. STABILITY OF THE IN-DEGREE DISTRIBUTION

Note that the expected value of the average in- and the out-
degree are equal. Let d0 represent the sum of all in-degree
of the nodes of the initial network. Moreover, let K̄t be a
random variable that characterizes the average in-degree of
Gt. Note that

K̄t =
d0 +

∑t
i=1Mi + tn

n0 + t
(8)

Using the Law of Large Numbers, we know that

lim
t→∞

K̄t = lim
t→∞

d0 +
∑t

i=1Mi + tn

n0 + t

= lim
t→∞

∑t
i=1Mi + tn

t
= m

Note that

E[K̄t] = E

[
d0 +

∑t
i=1Mi + tn

n0 + t

]
=
d0 + tm

n0 + t
(9)

Based on eq. (9), E[K̄∞] = limt→∞ E[K̄t] = m and

E[K̄t+1] =
(n0 + t)E[K̄t] + E[Mt] + n

n0 + t+ 1
(10)

Remark 1: The monotonicity of the expected average in-
degree depends on the average in-degree of the initial net-
work. Note that E[K̄t] is strictly increasing if K̄0 < E[K̄∞];
strictly decreasing if K̄0 > E[K̄∞]; equal to E[K̄∞] if
K̄0 = E[K̄∞].
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A. Stability of the complementary cumulative in-degree dis-
tribution

Define the distribution of the network as an infinite dimen-
sional vector xt = (xt(0), xt(1), . . .), where xt(k) represents
the probability that the expected in-degree of a node, selected
uniformly at random at time t, is greater than or equal to k.
That is, xt(k) = P (E[Kt] ≥ k). Let xe = (xe(0), xe(1), . . .)
denote the limit distribution with xe(k) = F c

∞(k). Note that
∞∑
k=0

xt(k) =

∞∑
k=0

(k + 1)P (E[Kt] = k)

=

∞∑
k=0

kP (E[Kt] = k) +

∞∑
k=0

P (E[Kt] = k)

= E[K̄t] + 1 (11)

Using eq. (9), note also that

lim
t→∞

∞∑
k=0

xt(k) =

∞∑
k=0

xe(k) = E[K̄∞] + 1

Define X as the set of all bounded sequences in [0, 1] such
that the only sequence that satisfies

∑∞
k=0 x(k) = E[K̄∞]+1

is F c
∞, i.e.,

X =

{
x ∈ [0, 1]∞ :

∞∑
k=0

x(k) = E[K̄∞] + 1⇒ x = F c
∞

}
Let X0 ⊆ X be the set of all possible initial distributions.
For x0 ∈ X0, there exists a network G0 with complementary
cumulative in-degree distribution x0. Define the set

XC =

{
x ∈ X :

∞∑
k=0

x(k) = E[K̄∞] + 1

}
(12)

Note that XC = {xe}. Moreover, because limt→∞ xt(k) =
F c
∞(k), XC corresponds to a positive limit set of the model.

Using Lemma 3.1 in [14], it can be shown that XC is an
invariant set.

To guarantee that XC is asymptotically stable, we intro-
duce the following distance function on X .

Lemma 2: Consider the function ρ : X × X → R+
0 ,

ρ(x, y) =

∣∣∣∣∣
∞∑
k=0

(x(k)− y(k))

∣∣∣∣∣
and define an equivalence relation on X as x being related
to y if ρ(x, y) = 0. Let JxK denote the equivalence class of x
and X ∗ = {JxK : x ∈ X} the set of all equivalence classes.
If ρ∗ : X ∗×X ∗ → R+

0 is defined as ρ∗(JxK, JyK) = ρ(x, y),
then (ρ∗,X ∗) is a metric space.

Proof: Let w, x, y, z ∈ X . First, we show that ρ is
a pseudometric. In particular, note that ρ(x, y) ≥ 0 and
ρ(x, y) = ρ(y, x). To verify that ρ satisfies the triangle

inequality, note that

ρ(x, y) =

∣∣∣∣∣
∞∑
k=0

(x(k)− y(k))

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

(x(k)− z(k)) +

∞∑
k=0

(z(k)− y(k))

∣∣∣∣∣
≤ ρ(x, z) + ρ(z, y)

In general, for x, y ∈ X , note that x 6= y does not
imply that ρ(x, y) 6= 0 (i.e., ρ is a pseudometric). Sec-
ond, we show that for the equivalence relation over X ,
ρ∗ is well-defined, that is, if (JxK, JyK) = (JzK, JwK) then
ρ∗(JxK, JyK) = ρ∗(JzK, JwK). In particular, if (JxK, JyK) =
(JzK, JwK), then JxK = JzK and JyK = JwK. Because ρ
satisfies the triangle inequality, note that ρ(x, y) ≤ ρ(z, w)
and ρ(z, w) ≤ ρ(x, y), that is, ρ(x, y) = ρ(z, w), which
implies that ρ∗(JxK, JyK) = ρ∗(JzK, JwK).

Finally, we present sufficient conditions for (ρ∗,X ∗) to be
a metric space. Let JxK, JyK, JzK ∈ X ∗. In particular, since ρ
is a pseudometric, note that ρ∗ satisfies:

1) For JxK 6= JyK, we know that

ρ∗(JxK, JyK) = ρ(x, y) =

∣∣∣∣∣
∞∑
k=0

(x(k)− y(k))

∣∣∣∣∣ > 0

2) For x ∈ JxK and y ∈ JyK, note that ρ∗(JxK, JyK) = 0
if and only if ρ(x, y) = 0, that is, if and only if
|
∑∞

k=0(x(k)− y(k))| = 0. This implies that y ∈ JxK
and x ∈ JyK. Therefore, ρ∗(JxK, JyK) = 0 if and only if
JxK = JyK.

3) For x, y ∈ X , we know that ρ∗(JxK, JyK) = ρ∗(JyK, JxK)
because ρ(x, y) = ρ(y, x).

4) For x, y, z ∈ X

ρ∗(JxK, JyK) = ρ(x, y)

≤ ρ(x, z) + ρ(z, y)

= ρ∗(JxK, JzK) + ρ∗(JzK, JyK)

We use Lemma 2 to prove the stability of XC .

Theorem 2: The invariant set XC is asymptotically stable
with basin of attraction X0.

Proof: Let V : X ∗ → R+
0 , defined by V(JxK) =

ρ∗(JxK, JxeK), be a Lyapunov candidate function. Because
xe ∈ X is the only distribution that satisfies

∑∞
k=0 x(k) =

E[K̄∞] + 1, we have that JxeK = {xe}, which implies that
XC = JxeK. Note that V(XC) = 0. The following four
conditions are sufficient to guarantee the asymptotic stability
of XC [15].
Existence of a lower bound: From the definition of V , we
have that for all sufficiently small ε1 > 0, there exists a
δ1 = ε1 such that for all JxK ∈ X ∗, if ρ∗(JxK,XC) > ε1,
then V(JxK) > δ1.

Existence of an upper bound: Note that for all sufficiently
small ε2 > 0, there exists a δ2 = ε2 such that for all JxK ∈
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X ∗, if ρ∗(JxK,XC) < δ2, then V(JxK) ≤ ε2.

Non-increasing trajectories along all possible motions:
Consider the following two cases based on the value of K̄0.
Using Remark 1, if K̄0 < E[K̄∞], then

V(JxtK) =

∣∣∣∣∣
∞∑
k=0

xt(k)−
∞∑
k=0

xe(k)

∣∣∣∣∣
= E[K̄∞] + 1−

∞∑
k=0

xt(k)

Because E[K̄t] is a strictly increasing function, using
eq. (11), we have that

V(JxtK)− V(Jxt+1K) = E[K̄t+1]− E[K̄t] > 0

Similarly, if K̄0 > E[K̄∞] then

V(JxtK)− V(Jxt+1K) = E[K̄t]− E[K̄t+1] > 0

Convergence: Because xt(k) = P [E[Kt] ≥ k] = F c
t (k), we

know that limt→∞ xt(k) = F c
∞(k) = xe(k), which implies

that V(JxtK)→ 0 as t→∞.

B. Stability of the average in-degree

We now characterize an invariant set that captures the
behavior of the in-degree distribution. Let yt = E[K̄t]
denote the expected value of the average in-degree and
ye = limt→∞ yt = E[K̄∞]. Let d(·, ·) denote the Euclidean
distance and

YC = {y ∈ R+
0 : d(y, ye) = 0}

It is clear that {ye} = YC . To show that YC is an invariant
set, suppose that yt = ye at t ≥ 0. Note that E[K̄t] =
E[K̄∞]. Based on eq. (10), we know that E[K̄t+1] = E[K̄t],
that is, yt+1 = ye, which implies that YC is an invariant set.

The following theorem proves the stability of YC .

Theorem 3: The set YC is asymptotically stable with
basin of attraction R+.

Proof: Consider the function

ρ̄(y,YC) = inf{d(y, u) : u ∈ YC}

and letW(y) = ρ̄(y,YC) be a Lyapunov function candidate.
Note that ρ̄(y,YC) = d(y, ye). Furthermore, we know that
W(y) ≥ 0 for all y ∈ Y , and W(y) = 0 if and only if
y ∈ YC . The following conditions guarantee the asymptotic
stability of YC .

Existence of a lower bound: Note that for all sufficiently
small ε1 > 0, there exists a δ1 = ε1 such that for any
y ∈ R+

0 , if ρ̄(y,YC) > ε1, then W(y) > δ1.

Existence of an upper bound: Note that for all sufficiently
small ε2 > 0, there exists a δ2 = ε2 such that for any y ∈
R+

0 , if ρ̄(y,YC) < δ2, then W(y) ≤ ε2.

Non-increasing trajectories along all possible motions:
Because YC is an invariant set, if yt ∈ YC , then yt′ ∈ YC
for all t′ > t, which implies that W(yt) = W(yt′) = 0.
Now, suppose that yt /∈ YC . If yt+1 ∈ YC , then
W(yt) >W(yt+1) = 0. If yt+1 /∈ YC , then

W(yt)−W(yt+1) =
n0|K̄0 − E[K̄∞]|

(n0 + t)(n0 + t+ 1)
> 0

That is, W(yt) > W(yt+1), which implies that W is non-
increasing along all possible motions of the model.

Convergence: Because yt = E[K̄t], limt→∞ yt = ye, which
implies that W(yt)→ 0 as t→∞.

IV. SIMULATIONS

Let r = 5, c = 3, pr = 0.8, pc = 0.4 and n = 2.
Let G0 = (V0, E0) be an initial network with |V0| = 9 and
in-degrees (3, 3, 3, 3, 1, 3, 6, 4, 4). The initial state is given
by

x0 = {1, 1, 0.88, 0.88, 0.33, 0.11, 0.11, 0, 0, . . .}

According to eq. (12), the invariant set XC is given by

XC = {x ∈ X :
∑∞

k=0 x(k) = 8.2}

Figure 1 illustrates the evolution of the states of the
simulated network for the in-degree together with the the-
oretical values of xe(k) for 0 ≤ k ≤ 9. Note that the
simulated distributions approach the theoretical limits (based
on Corollary 1). Simulations correspond to an average of 100
runs of the model.
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Fig. 1. (a) Evolution of xt(k) = P [E[Kt] ≥ k] for 0 ≤ k0 ≤ 9; and (b)
Complementary cumulative in-degree distribution. Solid line represents the
average of the ccdf of 100 runs of the model and the dashed represents the
predictions for r = 5, c = 3, pr = 0.8, pn = 0.4 and n = 2.

V. CONCLUSIONS

Based on the discrete version of the Jackson-Rogers
model, our work uses a discrete-time approach to charac-
terize the evolution of the probability function that a node
has particular in-degree k at time t. Moreover, we describe
the asymptotic behavior for the cumulative in-degree dis-
tribution, and show that the distribution is asymptotically
stable. We also show that the average in-degree is asymptot-
ically stable. Characterizing the stability properties of other
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centrality measures, for example, the eigenvector centrality,
remains a future research direction.
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