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Abstract— The analysis of patterns of social interaction plays
an important role in providing services on online platforms
(e.g., in designing algorithms for the allocation of information
resources). The proposed model takes into account human
factors underlying the concept of the Ideal Free Distribution
(IFD), which captures empirical patterns of the aggregate
group-level behavior of individuals competing for resources.
The model explains the phenomenon of resource undermatching
as a natural IFD-based outcome resulting from boundedly
rational decision-making (i.e., individuals perceive only some
of the available resources). We show that undermatching can
be described as a globally balanced state in which the perceived
cost of the best forgone alternatives is approximately the
same for all individuals. Furthermore, we identify conditions
that guarantee stability. From this analysis, we infer that the
matching of the aggregate of individual choices to resources is
independent of their initial distribution. Finally, we quantify
the effect of resource scarcity on the degree of matching.

I. INTRODUCTION

Recent years have witnessed a tremendous growth in social
mobility and online platforms on which service providers
leverage large amounts of data for allocating resources.
The analysis and design of cost-effective, customized user
services requires a good understanding of the impact of
information flow constraints on the overall behavior of these
distributed systems (e.g., in a virtual marketplace where
providers compete for a pool of customers [1]). Information
foraging tries to explain how individuals seek, gather, and
share information, relying solely on local mechanisms to
make decisions [2]. It provides a behavioral framework for
developing algorithms that effectively support key concepts
underlying the formation of patterns of social interaction
(e.g., in order to counterbalance inefficient allocations, it
is key to understand the extent to which noisy information
biases human decisions [3]). The concept of the Ideal Free
Distribution (IFD) has recently received much attention in
the information foraging literature and has been useful to
describe the relationship between a limited set of resources
distributed across certain options and the aggregate of in-
dividual choices (group-choice behavior) often found in
empirical data [4]–[9].

According to the original IFD, group-choice approxi-
mates an equilibrium state where the number of resources
per individual is the same for any option (i.e., the ratio
between the number of resources associated to an option
and the number of individuals selecting that option is the
same for all individuals across all options). The word ideal
means that all individuals are equally competitive and are

1The authors are with the Department of Electrical Engineering and
Computer Science, Pontificia Universidad Javeriana, Cali, Colombia.

rational (i.e., have complete information about the number
of resources associated to and the number of individuals
choosing any option). The word free means that individuals
can make decisions instantaneously, without incurring an
extra cost for changing options. Broadly speaking, IFD
patterns of human decision-making suggest that there are
mechanisms (incentives) producing well-defined aggregate
behaviors. Understanding how these patterns are influenced
by social and environmental factors is an important step in
trying to incorporate broad social behavior into the design
of algorithms underlying online services (e.g., algorithms for
resource allocation).

Over the past fifteen years, social group-choice experi-
ments have shown that individuals are less sensitive to the
allocation of resources than predicted by the original IFD,
a systemic deviation called resource undermatching [4]–[9].
Undermatching means that fewer than expected individuals
select the most profitable option, while more individuals
choose the least profitable one. Even when the rationality
of individuals is limited to locally available resources and
information, there exists a noticeable degree of undermatch-
ing [5]–[7].

This work introduces a bounded rationality model that
can explain the phenomenon of resource undermatching as a
natural outcome from human decision-making. It is closely
related to the work in [10] where the authors propose a
probabilistic model to evaluate how spatial limitations affect
the expected distribution of choices. Our model, however,
focuses on how the individuals’ perceptions affect the degree
of matching. It is built on an undirected network of options,
which constrains the available resources. Most importantly,
the model relaxes the ideal assumption of the original IFD,
allowing us to characterize human incentives based solely
on local information. Instead of assuming that individuals
behave as if they were maximizing the number of resources
per individual (like the work in [11]), individuals behave
as if they were minimizing opportunity costs. The resulting
outcome exhibits a degree of undermatching that does not
depend on the variability of resources or the number of
available options.

Our contribution is threefold. First, we propose a mecha-
nism for decision-making based on the notion of opportunity
cost for rationally bounded individuals (i.e., decisions depend
on information about locally available alternatives). Second,
we show that the IFD can be described as a globally
balanced state, where the opportunity cost across options
is approximately the same. Third, we present an analytical
expression for the degree of matching for scenarios where
there exists a small scarcity of resources (i.e., when the total
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number of individuals is slightly smaller than the number of
resources).

The remainder of this paper is structured as follows. Sec-
tion II describes the proposed model. Section III describes
the phenomenon of undermatching as a globally balanced
state. Section IV introduces the mechanism for decision-
making and Section V shows that the set representing re-
source undermatching is invariant. Section VI presents con-
ditions that guarantee that the invariant set is asymptotically
stable. Section VII describes simulation results that describe
the effects of resource scarcity on the degree of matching.
Finally, Section VIII draws some conclusions and future
research directions.

II. THE MODEL

Consider an undirected network G = (N ,A), where
N = {1, . . . , n} represents the available options (nodes). We
say that options i and j are adjacent (i.e.,{i, j} ∈ A) if an
individual is allowed to change option i for option j and vice
versa. The neighborhood of option i is the set of all locally
available options defined by Ni := {j ∈ N : {i, j} ∈ A}.
Individuals who select option i ∈ N may change options
(select different nodes) without incurring an extra cost, but
only according to the constraints imposed by Ni.

Let xi ∈ R,R = {1, . . . ,m}, describe the number
of individuals deciding to choose option i; the constant
m = x1 + · · · + xn denotes the total number. Define
x = (x1, . . . , xn) as the state of the system and let

X :=

{
x ∈ Rn :

∑
i∈N

xi = m

}
Note that the state space X represents the set of all possible
choices across the network of options G. Moreover, let
wi ∈ N describes the number of local resources associated
to option i.

Using the generalized habitat matching rule, undermatch-
ing can be described by

log
xi
xj

= a log
wi
wj

(1)

where a > 0, known as the degree of matching, represents a
measure of sensitivity between a group of individuals and a
set of resources [7]. On a logarithmic scale, the distribution
of choices is directly proportional to the number of resources.
According to eq. (1), the value of the degree of matching can
be described as

a =
log
(
xi

xj

)
log
(
wi

wj

) (2)

Next, we propose how a local decision-making mechanism
may produce values that are consistent with the empirical
range of a, 0.5 ≤ a ≤ 0.9 [4]–[9].

Suppose that individuals make decisions based on percep-
tions, which in general depend on xi and wi. Conceptually,
the value of ϕi(xi, wi) represents the average assessment
that individuals make of option i. The incentive to change

option i ∈ Nj for option j depends on the relative perception
difference between both options (i.e., the opportunity cost of
choosing one option over another). In particular, consider the
set of states

Xu := {x ∈ X : |ϕi(xi, wi)− ϕj(xj , wj)| ≤ h,∀i, j ∈ N}
(3)

where h ≥ 0 is a constant. If x ∈ Xu, perceptions about
any pair of options i and j are considered similar and the
opportunity cost across any two options does not differ by
more than h.

Let w = w1 + · · ·+ wn be the total number of resources
available across the entire network. We require the following
assumptions on the options and the resources for which
individuals compete.

Assumption 1 (Availability): There exists some scarcity of
resources, r ∈ R, 0 < r < 1, such that w = c(1−r)m, where
c = 1 is a constant with units of resources/individuals.

Assumption 2 (Variability): Any difference in the number
of locally available resources is bounded by |wi − wj | ≤ w

n
for all i, j ∈ N .

Assumption 3 (Connectivity): The network of options
G(N ,A) is connected, without self-loops or parallel edges.

Assumption 1 implies that, if each individual pursues one
resource unit, there are not enough services to perfectly
meet individuals’ wants, thereby inducing competition. As-
sumption 2 places a bound on the difference between the
number of resources associated to the different options. All
options must be relatively attractive, despite the particular
distribution of individual choices (i.e., there does not exits
an option that carries most of the total of resources). Both,
Assumptions 1 and 2 are key to determine the degree of
matching. Finally, according to Assumption 3, individuals
must be allowed to change any option for at least another.

III. CHARACTERIZING UNDERMATCHING

Here, we focus on scenarios in which r < 0.5. Define the
perception of option i as

ϕi(xi, wi) = cxi − wi (4)

Eq. 4 means that an individual can perceive the difference in
resources between the number of resources being pursued
by the individuals selecting option i and the number of
resources associated to that option. To determine the value
of the degree of matching, note that if h = 0, x ∈ Xu only
when cxi − wi = cxj − wj for all i, j ∈ N . Because the
perceptions must be equal for all options, we know that for
any option i ∈ N

n(cxi − wi) = c

n∑
j=1

xj −
n∑
j=1

wj = cm− w (5)

Using eq. (5), the number of individuals selecting option i
can be described as

xi =
m

n
+

1

c

(
wi −

w

n

)
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and according to Assumption 1

xi =
mr

n
+
wi
c

(6)

Let wp = maxi{wi} and wq = mini{wi} (i.e., options p
and q represent the options with the most and the least avail-
able resources, respectively). Because each option satisfies
eq. (6), applying eq. (2) with option i = p and option j = q,
we know that when x ∈ Xu

a =
log
(
cmr+nwp

cmr+nwq

)
log
(
wp

wq

) =
log
(
wp

wq
− cmr(wp−wq)

wq(cmr+nwq)

)
log
(
wp

wq

) (7)

Now, because cmr(wp−wq)
wq(cmr+nwq)

≥ 0, the degree of matching is
bounded by a ≤ 1. In other words, if we define perceptions
according to eq. (4), then the set Xu represents an IFD
with undermatching. Equation (7) implies that when h = 0,
the analytical value of the degree of matching is unique.
There will always be some degree of undermatching, unless
all options have the same number of available resources.
Only when wp = wq , which implies that wi = wj for all
i, j ∈ N , the set Xu represents an IFD with strict matching
(i.e., for the particular case where resources are uniformly
distributed). In general, the degree of undermatching depends
on the options with the maximum and minimum number of
resources (options p and q).

Next, according to eq. (6), when x ∈ Xu, there exists two
bounds x̄li and x̄ui such that any option i satisfies

x̄li =
⌊mr
n

⌋
+
wi
c
≤ xi ≤

⌈mr
n

⌉
+
wi
c

= x̄ui (8)

Because xi ∈ N, the value of xi must equal one of the
bounds (i.e., if x ∈ Xu, then xi ∈ {x̄ui , x̄li} for every i ∈
N ). Consider a state x ∈ Xu and options i and j such that
ϕi(xi, wi) > ϕj(xj , wj) (i.e., the case when h 6= 0). The
largest difference in perceptions between both options is

ϕi(xi, wi)− ϕj(xj , wj) < ϕi(x̄
u
i , wi)− ϕj(x̄lj , wj)

= (cx̄ui − wi)− (cx̄lj − wj)

= c
(⌈mr

n

⌉
−
⌊mr
n

⌋)
In other words, given that xi ∈ N, the upper bound on

the largest difference in perceptions depends on the total
number of individuals, the level of resource shortage, and
the number of available options. Because

⌈
mr
n

⌉
−
⌊
mr
n

⌋
takes values of either 0 or 1, it is the combination of m, r,
and n which determines whether two options are considered
similar when their perceptions differ by one. Here, we restrict
the maximum difference in perceptions when x ∈ Xu to
h ∈ {0, 1}.

Next, note that the options with the maximum and mini-
mum number of resources (options p and q), each satisfies
eq. (8). Moreover, using eq. (2) with option i = p and
option j = q, we can derive the following bounds on the

degree of matching

log

(⌊
mr
n

⌋
+

wp

c⌈
mr
n

⌉
+

wq

c

)
≤ a log

(
wp
wq

)
≤ log

(⌈
mr
n

⌉
+

wp

c⌊
mr
n

⌋
+

wq

c

)

The value of a log
(
wp

wq

)
equals the lower bound, when

according to eq. (8) xp = x̄lp and xq = x̄uq ; and the upper
bound when xp = x̄up and xq = x̄lq .

IV. DYNAMICS OF CHOICE

To propose a mechanism of how individuals reach an IFD
with undermatching, let us define a discrete event system
S = (X ,G, E , g, fe). The set E denotes all possible events
underlying the dynamics of choice; an event at time index
k is described as e(k). Transitions between states depend
on the activation function g. For x(k) ∈ X , we say that an
event e(k) is active, if e(k) ∈ g(x(k)). If an active event e(k)
occurs, the transition function fe generates the state x(k+1)
defined by x(k+1) := fe(k)(x(k)). Note that at time index k
there is one current state, but different event sequences may
lead to the same state (only one of possibly several active
events may occur). If there is a deadlock, the only active
event is the null event e0, where fe0(x(k)) = x(k).

To specify the set of events E and the transition function
fe, let

Mi := {j ∈ Ni : ϕi(xi, wi) < ϕj(xj , wj)} (9)

be the set of options j ∈ Ni for which option i is a better
local alternative. Based on eq. (9) we let individuals behave
as if they were minimizing the opportunity costs associated
to the various options (i.e., if ϕi(xi, wi) − ϕj(xj , wj) < 0
then option i is an attractive alternative over option j).

With eji, j ∈ Mi, we represent an individual’s decision
to change option j for option i. Let Eα = {eji} be the set of
all possible switching decisions across the option network.
Then, the set of events is given by the powerset of Eα
(without the empty set), E = P (Eα) \ {∅}, and an event
e(k) ∈ E is a set where each element represents a decision
to change options. We assume that no two individuals choose
to change the same option simultaneously. Moreover, if eji
captures the decision of one individual at time index k, and
an active event e(k) occurs with eji ∈ e(k), then we consider
that eji′ /∈ e(k) for any i′ 6= i ∈ Nj .

To indicate whether an individual chooses another avail-
able option over option i, let

1−i (k) =

{
1, if eij ∈ e(k) for some j ∈ Ni;
0, otherwise

Similarly, the indicator function 1+i (k) indicates whether an
individual finds option i more attractive than other locally
available options, that is

1+i (k) =

{
1, if eji ∈ e(k) for some j ∈ Ni;
0, otherwise
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The number of individuals choosing option i at k + 1 is

xi(k + 1) = xi(k)− 1−i (k) + 1+i (k) (10)

V. INVARIANCE OF IFD WITH UNDERMATCHING

Next, we will show that if x(k) ∈ Xu for some k ≥ 0,
then x(k′) ∈ Xu for all k′ ≥ k (i.e., the set Xu is invariant).
If x(k) ∈ Xu, consider the two possible scenarios based on
the value of h. If h = 0, we know that according to eq. (3),
the perceptions about any two options at time instant k are
equal. Then, according to eq. (9), the set Mi = ∅ for all
i ∈ N , i.e., there are no incentives for individuals to change
their current options; the only active event is e0. We know
that at time k + 1, xi(k + 1) = xi(k) for all i ∈ N . Thus,
if h = 0 then x(k + 1) ∈ Xu.

Now, if h = 1, according to eq. (3), the opportunity cost
between options i and j at time k satisfies

|ϕi(xi(k), wi)− ϕj(xj(k), wj)| ≤ 1

First, if the magnitude of the difference in percep-
tions is strictly less than one, then because xi, wi ∈ N,
ϕi(xi(k), wi) = ϕj(xj(k), wj). Again, according to eq. (9),
individuals will not change options. Second, if the magnitude
is equal to one, without loss of generality, consider two
options p and q such that ϕp(xp(k), wp) > ϕq(xq(k), wq).
Using eq. (10), the difference in perceptions between op-
tions p and q at a time k + 1 is given by

|ϕp(xp(k + 1), wp)− ϕq(xq(k + 1), wq)|
= |cxp(k + 1)− wp − cxq(k + 1) + wq|
= |cxp(k)− c1−p (k) + c1+p (k)− wp − cxq(k) + c1−q (k)

− c1+q (k) + wq|

Because h = 1, then xp(k) is equal to the upper bound
and xq(k) to the lower bound in eq. (8), i.e., xp(k) = x̄up
and xq(k) = x̄lq . Option p is not attractive for any in-
dividual to choose because it has the highest perception
possible. According to eq. (9), Mp = ∅ and 1+p (k) = 0.
Because ϕq(xq, wq) is the lowest perception possible, indi-
viduals choosing option q will not change their option and
1−q (k) = 0. Thus

|ϕp(xp(k + 1), wp)− ϕq(xq(k + 1), wq)|
=
∣∣cxp(k)− c1−p (k)− wp − cxq(k)− c1+q (k) + wq

∣∣
And because cxp(k)− wp − cxq(k) + wq = 1,

|ϕp(xp(k + 1), wp)− ϕq(xq(k + 1), wq)|
=
∣∣1− c1−p (k)− c1+q (k)

∣∣ ≤ 1

Therefore, x(k+ 1) ∈ Xu and the set of states representing
undermatching is invariant.

VI. STABILITY PROPERTIES OF THE MODEL

The following theorem establishes the stability properties
of Xu. It shows how the dynamics of the aggregate of
individual choices ultimately undermatches the resources.
The proof of the following theorem is presented in the
Apendix.

Theorem 1: Suppose that Assumptions 1-3 hold. Then,
the invariant set Xu has a region of asymptotic stability equal
to X .

Theorem 1 implies that the proposed mechanism allows
individuals to achieve a globally balanced distribution based
on local decision-making, meaning that perceptions do not
differ by more than one, even if there does not exist an edge
between options. Because individuals behave as if they were
trying to minimize the opportunity costs across options, the
differences in perceptions vanish as the state approaches Xu
(despite the constraints imposed by the interconnected set of
options A). It should be highlighted that reaching a globally
balanced distribution based on a local interaction mechanism
is possible because individuals persistently try to select more
attractive alternatives even when both options are perceived
as similar (i.e., when the difference in perception between
the current and an alternative option is one).

VII. SIMULATIONS

To gain better insight into how group-choice behavior
reaches x ∈ Xu, consider a low resource scenario where
m = 590 and n = 6. The set A represents a ring topology
and for every option i ∈ N , the number of resources
wi = 33, 42, 53, 64, 75, 87 (w = 354 and r = 0.4).

Figure 1(a) shows the evolution of the perceptions across
options. The distance between the two horizontal lines in the
inset plot represents the dynamics within Xu when h = 1 in
eq. (3). Due to the particular number of individuals, the level
of resource shortage, and the number of available options,
group-choice behavior does not converge to a unique state.

Figures 1(b) and 1(c) show that the model captures the
tendency of individuals to be less sensitive to resource
allocations than predicted by an IFD with strict matching.
In particular, Figure 1(b) shows the evolution of the number
of resources per individual at each option. Figure 1(c)
shows how xi

xj
relates to wi

wj
on a logarithmic plot. The

dots indicate deviations in group-choice behavior from the
diagonal line which represents strict matching. It illustrates
that there is low discriminability of resources, represented
by a = 0.57. When the state reaches Xu (at around k = 115
in Figure 1(a)), variations in the number of resources per
individual are small for any option, but the ratio of resources
between two options does not match the ratio of individuals
choosing these options. Individuals choosing the option with
the most resources enjoy higher resources rates.

Recall that the value of a (derived in Section III) depends
in general on m, r, n, wp, and wq . It can be shown that
the derivate of eq. (7) with respect to m tends to zero as m
tends to infinity. Similarly, the derivative of a with respect
to n tends to zero as n tends to infinity. It suggests that
the proposed model is not sensitive to such variations. For
a finite number of decision-makers, Figure 2(a) quantifies
how variations in resource availability affect the degree of
matching. In particular, for scenarios with 0.1 ≤ r ≤ 0.5,
more scarcity leads to a lower degree of matching, but the
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Fig. 1. Dynamics of decision-making leading to the IFD with undermatching in scenarios where eq. (4) represents the perceptions and eq. (9) the local
mechanism of decision-making; (a) perceptions associated to each option; (b) number of resources per individual at each option; (c) group-choice ratios
when the IFD with undermatching has been achieved.

value does not depend on m. Moreover, note that increasing
the maximum difference between resources wp−wq , as long
as Assumption 2 is satisfied, does not affect the degree of
matching (see Figure 2(b)).
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Fig. 2. The effect of resource scarcity on the degree of matching; (a)
variation in m; (b) variation in wp � wq .

Next, to illustrate the impact of misperceptions, consider a
scenario where individuals lack perfect information. Similar
to the work in [5] we assume that they are well informed
about the distribution of resources, but not fully aware of the
decisions made by other individuals. Let “noisy” perceptions
be represented by

ϕ̄i(xi, wi) = c(1− δ)xi − wi

where (1−δ) is the portion of individuals that are observable.
Measures of the degree of matching indicate that noisy per-
ceptions about the number of individuals choosing an option
leads to less undermatching, as illustrated in Figure 3(a).

Figure 3(a) shows the value of the degree of matching
when we vary the proportion of observable individuals.
Because individuals do not perceive the total number of indi-
viduals selecting the different options, the ratio of individuals
selecting options with a large number of resources is larger
than when perfect information about the choices is available.
Figure 3(b) shows the proportion of observable individuals
that would maximize the profitability for all individuals.
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Fig. 3. Variations in the number of visible individuals; (a) changes in the
value of the degree of matching; (b) proportion of visible individuals to
achieve an IFD with strict matching.

VIII. CONCLUSIONS

The proposed mechanism explains undermatching as a
natural outcome resulting from local decision-making. In
particular, the degree of matching depends strongly on the
level of resource shortage. The dynamics within the invariant
set allow that the mechanism to yields a distribution of
choices where the perception associated to any two options
i, j ∈ N does not differ by more than one, despite the
constraints imposed on the network of options. Evaluating
whether empirical IFD distributions in human group-choice
exhibit local or global balanced states is an important direc-
tion for future research.

IX. APPENDIX

Proof: Consider the following Lyapunov candidate
function

V(x) :=
1

c
max
i
{ϕi(xi, wi)} −

1

c
min
i
{ϕi(xi, wi)}

−
⌈mr
n

⌉
+
⌊mr
n

⌋ (11)

Define ρ(x,x′) := maxi{|xi − x′i|} as the metric on X ,
ρ(x,Xu) := inf{ρ(x, x̄) : x̄ ∈ Xu} as the distance from
x to Xu, and B(Xu; ε) := {x ∈ X : 0 < ρ(x,Xu) < ε}
as the ε-neighborhood of Xu. Note that, if x ∈ Xu then
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ρ(x,Xu) = 0 and V(x) = 0. The following four conditions
are sufficient to guarantee the stability of Xu.

First, to derive the lower bound on the Lyapunov function
V(x), let d = arg maxi{i ∈ N : |xi − x̄i| = ρ(x,Xu)}
(i.e., option d represents an option (of a possible
few) with the largest difference to the closest state
in Xu). Let ϕp(xp, wp) = maxi{ϕi(xi, wi)} and
ϕq(xq, wq) = mini{ϕi(xi, wi)}. Then according to eq. (4)

V(x) = xp −
wp
c
−
⌈mr
n

⌉
− xq +

wq
c

+
⌊mr
n

⌋
Moreover, for any x̄ ∈ Xu options p and q satisfy eq. (8),
and

V(x) = xp − x̄up − xq + x̄lq (12)

Because xi ∈ N, the maximum perception satisfies
cxp − wp ≥

⌈
mr
n

⌉
and xp − x̄up ≥ 0. Similarly, because

the minimum perception satisfies cxq − wq ≤
⌊
mr
n

⌋
, then

x̄lq − xq ≥ 0. Let |xi − x̄i| = min{|xi − x̄ui |, |xi − x̄li|},
such that for any x /∈ Xu and x̄ ∈ Xu

V(x) = |xp − x̄p|+ |xq − x̄q| (13)

Consider the following two cases. If p = d, we
have |xd − x̄d| > |xq − x̄q|. Using eq. (13),
V(x) = |xd − x̄d|+ |xq − x̄q|. Then

V(x) ≥ |xd − x̄d| = ρ(x,Xu) > ε1 = δ1

If q = d, we know that |xd − x̄d| > |xp − x̄p|. Again,
V(x) ≥ ρ(x,Xu) > ε1 = δ1. Therefore, for all sufficiently
small ε1, 0 < ε1 < r, there exits δ1 = ε1 > 0, such that if
ρ(x,Xu) > ε1 then V(x) ≥ ε1.

Second, to derive the upper bound on the Lyapunov
function V(x), consider the following two cases. If p = d,
we have |xd − x̄d| > |xq − x̄q|. Again, using eq. (13),
V(x) = |xd − x̄d|+ |xq − x̄q|. Then

V(x) ≤ 2|xd − x̄d| = 2ρ(x,Xu) < 2δ2 = ε2

If q = d we know that |xd − x̄d| > |xp − x̄p| and
V(x) ≤ 2ρ(x,Xu) < 2δ2 = ε2. Therefore, for all
sufficiently small ε2 > 0, there exits δ2 = ε2

2 > 0, such
that if ρ(x,Xu) < ε2

2 then V(x) ≤ ε2.

Third, we need to show that for any x(0) ∈ B(Xu; ε), any
sequence of events in the set E yields

V(x(k)) ≥ V(x(k + 1))

Let V1(x) = maxi{ϕi(xi, wi)} −
⌈
mr
n

⌉
and that

V2(x) =
⌊
mr
n

⌋
− mini{ϕi(xi, wi)}, so that

V(x) = V1(x) + V2(x). Assume that x(k) /∈ Xu and
let option p be an option that has the largest perception,
for which individuals have at least one locally available
attractive alternative (i.e., with a lower opportunity cost).
We want to show that ϕp(xp(k), wp) > ϕj(xj(k + 1), wj)
for p ∈ Mj for some alternative option j. Note that
because ϕp(xp(k), wp) > ϕj(xj(k), wj), we know that

ϕp(xp(k), wp)− ϕj(xj(k), wj) ≥ 1. Then

ϕp(xp(k), wp) ≥ ϕj(xj(k), wj) + 1

= ϕj(xj(k) + 1+j , wj) = ϕj(xj(k + 1), wj)

Thus, V1(x(k)) ≥ V1(x(k + 1)).
Next, to show that V2 is non-increasing suppose that

x(k) /∈ Xu and that option q has the lowest per-
ception, with at least one less attractive locally avail-
able alternative (i.e., with a higher opportunity cost).
We know that ϕq(xq(k), wq) < ϕi(xi(k), wi) and
ϕi(xi(k), wi)− ϕq(xq(k), w) ≥ 1 for some option i. Then

ϕq(xq(k), wq) ≤ ϕi(xi(k), wi)− 1

= ϕi(xi(k)− 1−i , wi) = ϕi(xi(k + 1), wi)

Thus, V2(x(k)) ≥ V2(x(k + 1)), which guarantees that
V(x(k)) ≥ V(x(k + 1)).

Finally, to show that V(x(k)) → 0 as k → ∞, let
τ = inf{V(x(k)) : k ∈ N}. Using eq. (13) we have that
|xp(k) − x̄p| + |xq(k) − x̄q| = τ which implies that xp(k)
is above the equilibrium (xp(k) > x̄p), xq(k) is below the
equilibrium (xq(k) < x̄q), or both. In other words, option p
is not an attractive option, and some individuals will change
for an alternative. Similarly, if option q is the most attractive
option then some individuals will change their current option
for option q. Because V is a non-increasing function, then

V(x(k + 1)) < τ = V(x(k))

which contradicts the fact that τ is the infimum of V(x(k)).
Thus, V(x(k))→ 0 as k →∞.
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