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Abstract— Integrating human factors into the design of large-
scale distributed applications requires capturing broad patterns
of decision-making over time. The proposed theoretical frame-
work introduces a dynamic model that resembles empirical
dispersal patterns between the quality of an option and the
number of individuals choosing that option. We use the notion
of the Ideal Free Distribution (IFD) to estimate the resulting
population-dependent equilibrium point and reduce uncertainty
about how groups of individuals choose between available op-
tions. Our contribution is twofold. First, we identify conditions
that lead to the IFD under constrained choice. Second, we
illustrate how biases in decision-making can lead to systemic
deviations from the IFD.

I. INTRODUCTION

The well-known concept in behavioral ecology of the

Ideal Free Distribution (IFD) characterizes how foragers

allocate themselves to different resources under two main

assumptions [1]. The word ideal suggests that all foragers

have complete knowledge and equal abilities to compete for

a finite number of resources across different sites. The word

free suggests that foragers can move between any two sites

without incurring any cost. In a closed environment (i.e.,

with a constant population), foragers reach an equilibrium

distribution where all foragers have an equal chance to

succeed. The probability of success is determined by w
m

where w and m are the number of resources and foragers at

a site. According to the IFD the allocation of foragers at any

two sites i and j ultimately satisfies

mi

mj

=
wi

wj

(1)

Because the dispersal pattern across sites is not random,

empirical distributions resembling the IFD suggest the exis-

tence of decision-making mechanisms that are influence by

social and environmental determinants of individual success.

Resting on the ideal-free assumptions, the main insight

behind the IFD is that decision-making not only depends on

the number of resources available, but also on the number

of individuals allocating their efforts to a site. The IFD can

be viewed as an equilibrium point that is Pareto optimal

in the sense that no individual, as a player in a social

interaction game, can benefit from changing its strategy

unilaterally without making herself and other players worse

off (indeed it represents an optimal mean benefit for all play-

ers). Population-dependent equilibria and systemic deviations

from the IFD are often described by

log
mi

mj

= a log
wi

wj

+ log bij (2)
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where a > 0 is a measure of sensibility between a group

of individuals and a set of resources, and bij > 0 captures

an underlying preference for one site over another [2].

Equation (2) (called the generalized habitat matching rule)

represents how individuals distribute themselves in direct

relation to the number of resources.

The matching rule captures a variety of empirical distribu-

tions that result of the dynamics of resource use. In [3] the

authors identify regularities that resemble IFD-like patterns

in decisions among humans. They carry out an experiment in

which participants are invited to choose between two groups.

A fixed but different number of participants are randomly

selected from each group and awarded one point. After ten

rounds, the participant with the most points wins a reward.

The results of this experiment show that the distribution of

members (the so-called group choice) is proportional to the

expected number of participants selected from each group.

In other words, group choice results from decision-making

mechanisms that relate the choice ratio between groups mi

mj

to the ratio of points associated to the groups wi

wj
according

to eq. (2).

To understand systemic deviations from the IFD, the

authors of [4] investigate the sensitivity of eq. (2) with

respect to the parameter a. When a = 1, the ratio of

resources matches the ratio of members in a group com-

peting for shared resources (known as strict matching).

When a < 1, the model indicates that the ratio of

members in a group is less than the ratio of resources

associated to that group, a result called undermatching.

Undermatching represents a distribution of individuals that

is less extreme than the distribution of resources, in the

sense that there are fewer individuals at the sites with

the most resources. Empirical measures suggest that human

distributions are indeed less sensitive to resource allocation

(with sensitivity parameters in the range 0.5 ≤ a ≤ 0.9
[3]–[10]). In other words, individuals tend to perceive sites

with the most resources as less attractive than predicted by

strict matching (a = 1). Modeling dynamics that yield IFD-

like patterns are a valuable tool to help explain undermatch-

ing as the natural outcome of decision-making processes in

which competitors underuse an available set of resources.

In general, both human factors (perception biases and de-

cision heuristics) and environmental constraints seem to ac-

count for systemic deviations of group choice from the ideal

matching rule. Ideal free distributions in human decision-

making are important in the process of (i) identifying what

particular determinants affect resource competition; and (ii)

integrating human factors into the design of large-scale

applications on interacting platforms (e.g., network-based

2013 American Control Conference (ACC)
Washington, DC, USA, June 17-19, 2013

978-1-4799-0176-0/$31.00 ©2013 AACC 919



applications that base their services on broad empirical

patterns of collective decision-making). It is the nature of

such research addressing issues of human interaction to

understand the particular social phenomenon and to engineer

systems that focus and take advantage of it.

The remainder of this paper is structured as follows. Sec-

tion II proposes a model that captures the collective dynamics

of decision-making when individuals compete for shared re-

sources. The model offers an analytical framework that cap-

tures the phenomenon of undermatching (rather than the per-

fect IFD) as the outcome of the interaction of rational agents

(i.e., individuals trying to maximize a utility function asso-

ciated to a set of options). Theorem 1 in Section III presents

conditions that guarantee that an invariant set representing

eq. (2) is asymptotically stable. Simulation results in

Section IV focus on the effects of decision-making on

the sensitivity parameter. Finally, Section V draws some

conclusions and future research directions.

II. THE MODEL

Consider an undirected network G = (N ,A), where

N = {1, . . . , n + 1} represents the set of n + 1 nodes

(available options) and A the set of edges (i.e., the possibility

of switching between options). The network represents the

constraints in the choices of q > 1 individuals, each allowed

to select an option (a node) at no cost but only according to

the set A. If i ∈ N , we say a node j ∈ N is adjacent to

i if {i, j} ∈ A. The neighborhood of node i is defined as

Ni := {j ∈ N : {i, j} ∈ A}. Note that modeling the dy-

namics of decision-making on a network relaxes to some ex-

tent the ideal and free conditions of the original assumptions

(e.g., some individuals may not be aware or able to choose

particular options depending on their current choice).

It is common to consider a large value of

q = m1 + · · · + mn+1 so that the distribution of

choices across options is a function of the fraction

of individuals selecting the particular options. Define

x = (x1, . . . , xn) to be the state of the system where

xi =
mi

q
, xi ∈ R,R = (0, 1], represents the proportion of

individuals selecting option i. Let ∆ be the simplex of all

n+ 1 tuples on Rn+1, that is

∆ :=

{

(x1, . . . , xn+1) ∈ Rn+1 :
∑

i∈N

xi = 1

}

(3)

Because it only requires n states to represent the dynamics

on G, we define the set X as the projection of the simplex

∆ on the n-dimensional space x1 . . . xn

X := {(x1, . . . , xn) ∈ Rn : (x1, . . . , xn+1) ∈ ∆} (4)

Consider the following assumptions on the network and

the utility function ui(xi) associated to each node i ∈ N .

(A1) The network is connected, without self-loops or paral-

lel edges.

(A2) The utility function ui is increasing, continuously

differentiable, strictly concave on R, and the deriva-

tive with respect to xi (its marginal utility function),

si := u′
i, is Lipschitz continuous on R.

Assumption (A1) places minimum constraints on the way

individuals may switch between options. Assumption (A2)

implies that for each i ∈ N there exists a positive constant

Ki such that
|si(x)− si(y)|

|x− y|
≤ Ki (5)

for all x, y ∈ R, x 6= y. Moreover, because si is strictly

decreasing in R then

si(x)− si(y)

x− y
< 0 (6)

The proposed decision-making mechanism rests on the

following family of marginal utility functions

si(xi) :=
wa

i

xi

(7)

where wi > 0 is the number of resources available at node

i and a is the sensitivity parameter from eq. (2). Because

different options represent different possibilities of success

(e.g., different number of resources are available for different

options), note that in general wi 6= wj for some i, j ∈ N .

According to eq. (7), the utility function of node i (with

constant of integration equal to zero) is given by

ui(xi) :=

∫

si(xi)dxi = wa
i ln(xi)

The utility function for the entire group of decision-makers

is defined as

u : Rn+1 → R
+
0

(x1, . . . , xn+1) 7→
∑

i∈N
ui(xi)

where R
+
0 represents the set of non-negative real numbers.

To show that the utility functions satisfy Assumption (A2),

note, first, that because the marginal functions are well de-

fined and continuous on R, ui is continuously differentiable

on R. Second, because ui is continuously differentiable on R
and si(xi) > 0 for all xi ∈ R, then ui is strictly increasing

on R. And third, the second derivative of ui

u′′
i = −

wa
i

x2
i

is always negative on R. Thus, ui is strictly concave on R.

With respect to the marginal utility of ui, note that for

x, y ∈ R
∣

∣

∣

∣

wa
i

x
−

wa
i

y

∣

∣

∣

∣

= |wa
i |

∣

∣

∣

∣

y − x

xy

∣

∣

∣

∣

And because x, y ≥ 1
q

, we know that

|si(x)− si(y)| ≤ q2wa
i |x− y|

Thus, si is Lipschitz continuous on R and satisfies eq. (5)

with Ki = q2wa
i . Finally, using the definition of si, it can

be shown that there exists a positive constant Li such that

si(x)− si(y)

x− y
= −

wa
i

xy
≤ −

wa
i

q2
= −Li
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for all x, y ∈ R, x 6= y. To satisfy eq. (6) let

L := min{Li : i ∈ N} and K := max{Ki : i ∈ N}. In

particular

−K ≤
si(x)− si(y)

x− y
≤ −L (8)

Assumption (A2) guarantees that there exists a unique

state x
∗ = (x∗

1, . . . , x
∗
n) such that u(x∗

1, . . . , x
∗
n+1) is maxi-

mized if and only if si(x
∗
i ) = sj(x

∗
j ) for all i, j ∈ N [11].

Let the set

X ∗ = {x∗ ∈ X : si(x
∗
i ) = sj(x

∗
j ), ∀i, j ∈ N} (9)

For convenience we denote s∗ = si(x
∗
i ) for i ∈ N .

The dynamics of decision-making are governed by a discrete

event system represented by S = (X ,G, E , g, fe), where E
denotes the set of all possible events that drive the dynamics

of the choices by the decision-makers. We denote an event at

time index k as e(k). Transitions between states depend on

the occurrence of events denoted by the activation function

g. For x(k) ∈ X , we say that an event e(k) is active at k,

if e(k) ∈ g(x(k)). Note that at time index k there is just

one state, but there could be many active events. If an active

event e(k) occurs at k, the transition function fe generates

the state x(k + 1) defined by x(k + 1) := fe(k)(x(k)). If

there is a deadlock at k, the only active event is the null

event e0, where fe0(x(k)) = x(k).

To define the set of events E , let

Mi := {j ∈ Ni : si(xi) > sj(xj)}

be the set of nodes j ∈ Ni such that the marginal utility

si(xi) is greater than sj(xj). The set Mi represents all

nodes for which node i is a feasible and attractive alternative

choice.

With eji, j ∈ Mi, we represent changing option j for

option i. Let Eα = {eji} be the set of all possible reallocation

of choices. Then, the set of events is given by the powerset

of Eα (without the empty set), E = P (Eα) \ {∅}, and an

event e(k) ∈ E is a set where each element represents the

reallocation of choices.

Changing option j for option i for a fraction of γji
decision-makers is denoted

γji =
1

2

(

xj −

(

wj

wi

)a

xi

)

(10)

where a > 0 can be viewed as the group’s ability to

differentiate between environmental factors wj and wi. As

a → 0 individuals tend to neglect the number of resources

associated to an option and focus solely on the number of

individuals choosing the same option. If an active event e(k)
occurs with eji ∈ e(k) and γji > 0, then we consider

γji′ = 0 for all eji′ ∈ e(k).

The proportion of decision-makers choosing option i at

time index k + 1 is

xi(k + 1) = xi(k)−
∑

{j:eij∈e(k)}

γij +
∑

{j:eji∈e(k)}

γji (11)

III. STABILITY PROPERTIES OF THE MODEL

The following theorem establishes the stability properties

of X ∗. It shows that starting from any initial state the

distribution of choices across G leads to the IFD.

Theorem 1: The invariant set X ∗ defined in eq. (9) has a

region of asymptotic stability equal to X .

To prove the stability properties of X ∗, consider the

Lyapunov candidate function

V(x1, . . . , xn) := max{s1(x1), . . . , sn+1(xn+1)}−s∗ (12)

and define ρ(x,X ∗) := inf{ρ(x,x∗) : x
∗ ∈ X ∗} as

the distance from x to X ∗1. Let the r-neighborhood of

X ∗ be B(X ∗; r) := {x ∈ X : 0 < ρ(x,X ∗) < r}.

Suppose that x ∈ B(X ∗; r), ρ(x,X ∗) = |xi − x∗
i | (i.e.,

node i represents the node with the largest distance to X ∗)

and max{s1(x1), . . . , sn+1(xn+1)} = sj(xj) (i.e., node j
represents a node with the highest marginal utility value).

The following four conditions are sufficient to guarantee the

stability properties of X ∗.

1) For all sufficiently small ε1, 0 < ε1 < r, there exists a

δ1 > 0 such that for all x ∈ X

(ε1 < ρ(x,X ∗) < r) ⇒ V(x) > δ1

2) For all sufficiently small ε2 > 0, there exists a δ2 > 0
such that for all x ∈ X

(ρ(x,X ∗) < r ∧ ρ(x,X ∗) < δ2) ⇒ V(x) > ε2

3) V is a non-increasing function.

4) V(x(k)) → 0 as k → ∞.

Proof:

1) To show that for all sufficiently small ε1, 0 < ε1 < r,

there exits a δ1 > 0, such that for all x ∈ X , if

ε1 < ρ(x,X ∗) < r then V(x) > δ1 consider the

following two cases. If i = j, we have xi−x∗
i < 0, and

according to eq. (8) there exist two constants K,L > 0
such that

−K(xi − x∗
i ) ≥ V(x) ≥ −L(xi − x∗

i ) = L(x∗
i − xi)

Thus V(x) ≥ L(x∗
i − xi) = L |xi − x∗

i | > Lε1 = δ1.

If i 6= j, then |xi − x∗
i | ≥ |xj − x∗

j | and xj − x∗
j < 0.

Using again eq. (8) we have

−K(xj − x∗
j ) ≥ V(x) ≥ −L(xj − x∗

j )

Because sj(xj) ≥ si(xi)

sj(xj)− sj(x
∗
j ) ≥ si(xi)− si(x

∗
i ) (13)

Suppose xi − x∗
i < 0. Then si(xi) − si(x

∗
i )

≥ L |xi − x∗
i |.

Using eq. (13) we have

sj(xj)− sj(x
∗
j ) = V(x) ≥ L |xi − x∗

i | > Lε1 = δ1

1ρ(x,y) := max{|xi − yi| : i = 1, . . . , n} is the metric on X , where
y = (y1, . . . , yn) ∈ X . Because X ∗ is a singleton set, the distance from
x to X ∗ is given by ρ(x,X ∗) := ρ(x,x∗).
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Now suppose xi − x∗
i > 0. Then si(xi) < s∗

which means some individuals must find it attractive

to change option i for an alternative option. Let

D1 := {ℓ ∈ N : sℓ(xℓ) > s∗}

D2 := {ℓ ∈ N : sℓ(xℓ) < s∗}

be the sets of nodes with marginal utilities above and

below of the equilibrium value, respectively. It is clear

that
∑

ℓ∈D2

(xℓ − x∗
ℓ ) =

∑

ℓ∈D1

(x∗
ℓ − xℓ) (14)

Moreover, using eq. (8), for each ℓ ∈ D1 we have

L(x∗
ℓ − xℓ) ≤ sℓ(xℓ)− sℓ(x

∗
ℓ ) ≤ K(x∗

ℓ − xℓ) (15)

And combining eq. (14) and eq. (15) we have

xi − x∗
i ≤

∑

ℓ∈D2

(xℓ − x∗
ℓ )

=
∑

ℓ∈D1

(x∗
ℓ − xℓ)

≤
∑

ℓ∈D1

sℓ(xℓ)− sℓ(x
∗
ℓ )

L

≤
n+ 1

L
(sj(xj)− sj(x

∗
j )) =

n+ 1

L
V(x)

If |xi − x∗
i | > ε1 then

V(x) >
Lε1
n+ 1

= δ1

Thus, for all sufficiently small ε1, 0 < ε1 < r, there

exits δ1 = Lε1
n

> 0, such that if ρ(x,X ∗) > ε1 then

V(x) > Lε1
n

.

2) To show that for all sufficiently small ε2 > 0, there

exits a δ2 > 0, such that for all x ∈ X , if ρ(x,X ∗) < r
and ρ(x,X ∗) < δ2, then V(x) ≤ ε2, consider again the

following two cases. If i = j then xi − x∗
i < 0, and

V(x) ≤ K(x∗
j − xj) ≤ K |xi − x∗

i | < Kδ2 = ε2

If i 6= j, then xj − x∗
j < 0 and

∣

∣xj − x∗
j

∣

∣ ≤ |xi − x∗
i |,

then

V(x) ≤ K(x∗
j − xj) = K

∣

∣xj − x∗
j

∣

∣

< K |xi − x∗
i | < Kδ2 = ε2

Therefore, for all sufficiently small ε2 > 0, there exits

δ2 = ε2
K

, such that if ρ(x,X ∗) < ε2
K

then V(x) ≤ ε2.

3) Fix a time k. To show that the function V is non-

increasing we must prove that if x(0) ∈ B(X ∗; r),
then any event in the set E yields

V(x(k)) ≥ V(x(k + 1))

Suppose that x(k) /∈ X ∗ (otherwise V(x(k)) = 0).

Let si(xi(k)) = max{sℓ(xℓ(k)) : ℓ ∈ Mi}, that is,

si(xi(k)) is a local maximum in the neighborhood Ni.

We want to show that sj(xj(k) − γji) < si(xi(k))
for all j ∈ Mi. Note that according to eq. (10)

sj(xj(k)− 2γji) = sj

((

wj

wi

)a

xi(k)

)

=
wa

i

xi

= si(xi(k))

And, because sj is a non-increasing function

si(xi(k)) = sj(xj(k)− 2γji) > sj(xj(k)− γji)

Since the local maximum is less than or equal to the

global maximum, we have

max{sℓ(xℓ(k)) : ℓ ∈ Mi} = si(xi(k))

> sj(xj(k)− γji)

= sj(xj(k + 1))

which guarantees that V(x(k)) ≥ V(x(k + 1)).
4) To show that the function V(x(k)) → 0 as k → ∞,

note that because of Conditions 1 and 2, V(x(k)) ≥ 0.

Any decreasing and lower bounded sequence con-

verges to its greatest lower bound (its infimum). We

want to prove that inf{V(x(k)) : k ∈ N} = p = 0
(which is equivalent to saying that x(k) → x

∗ as

k → ∞).

Assume that p > 0. Because V is continuous on R,

then using Condition 3, x(k) converges to the points

in the level set

L(p) := {x ∈ X : V(x) = p}

Let x(k′) ∈ L(p) characterize an instant in the state

of the network where there exists a unique node such

that si(xi(k
′)) = max{sℓ(xℓ(k

′)) : ℓ ∈ N}.

V(x(k′)) = p if and only if si(xi(k
′)) = p+s∗ which

implies that si(xi(k
′)) is above the equilibrium value

s∗. Note that si(xi(k
′)) must be the local maximum

in Ni. Therefore, there exists a node j ∈ Ni such that

γji > 0. Because V is a non-increasing function, then

V(x(k′ + 1)) < p = V(x(k′))

which contradicts the fact that p is the infimum of

V(x(k)). Thus p = 0. Finally, because V is continuous

on R we have that V(x(k′)) equals

max{s1(x1(k
′)), . . . , sn+1(xn+1(k

′))} − s∗ = 0

In other words, max{si(xi(k
′)) : i ∈ N} = s∗, which

happens if and only if sℓ(xℓ(k
′)) = s∗ for all ℓ ∈ N .

Thus, x(k′) = x
∗ and V(x(k)) → 0 as k → ∞.

Therefore, X ∗ has a region of asymptotic stability equal

to X .
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IV. SIMULATIONS

To illustrate the IFD in human decision-making, we

present data on the dynamics of a group of 16 stu-

dents who can choose one of three options, labeled as

red, green, and blue. At the end of a round, one par-

ticipant is randomly selected from the subgroup of stu-

dents that share the red (green) option and awarded a

token. For the blue option seven participants are se-

lected. After fourteen rounds, the participant with the most

tokens wins $25. The experimental platform resembles

the virtual environment in [6], [9] and is available at

http://jfinke.org/public html/IFD/index.php.

The sequence, denoted by the sequence

{x̂} = {x̂(1), . . . , x̂(13)}, corresponds to a data trajectory.

Each element x̂ ∈ R2 where x̂i denotes the fraction of

students choosing option i. Figure 1 shows the ratio of the

fraction of students between groups xi

xj
and the ratio of

selected participants wi

wj
at the end of a round. While the

diagonal line represents an IFD with strict matching, the

marks indicate the actual dispersal pattern from the data.

The empirical measure of the value of a is â = 0.54.

´

´

´

´

´

´

a
`
= 0.54

a = 1

-2 -1 0 1 2

-2

-1

0

1

2

LnHwi�w jL

L
n
Hx

i�
x

jL

Fig. 1. Group choice ratios from the data.

Figure 2 shows the evolution of the fraction of students

choosing each option starting from x̂(0) = ( 12 ,
1
2 ) (along

with the fraction of students selecting the third option).

Because seven participants are selected from the subgroup

of students that share the blue option, there are on average

a total of 10 students who choose this option compare to an

average of 3 students for the red (green) option.

To try to capture the evolution of the data with the

model presented in Section II, let q = 16, N = {1, 2, 3}
and A = {{1, 2}, {1, 3}, {2, 3}}. To every option i ∈
N we associate the marginal utility function (as in

eq. (7)), with w1 = w2 = 1 and w3 = 7. To resemble the

level of undermatching observed in the data let a = 0.54.

Figure 3 illustrates the outcome of a simulation run. In par-

ticular, Figure 3(a) shows the evolution of the marginal utility

function associated to each option. The IFD is achieved at

a unique state X ∗ according to eq. (9). Figure 3(b) shows

the fraction of individuals choosing each option (i.e., the

state trajectory). Note that because wi 6= wj , the IFD is

´

´

´ ´ ´
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´ ´ ´

´

´

´ ´

´

´

´

´

´
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´
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´

´
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´
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0.8

1.0

Time indices

x`
i

Fig. 2. Fraction of students selecting option i during a single round.

achieved with different number of individuals choosing each

option. While the data trajectory (Figure 2) does not reach a

stationary value, note that the model captures the qualitative

behavior of the dispersal pattern of the students (Figure 3(a)).
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Fig. 3. Dynamics of decision-making simulations leading to the IFD with
undermatching; (a) marginal utility values associated to option i; (b) fraction
of choices for option i ∈ N .

Next, consider the set of states for which each

option maximizes its associated marginal utility

function. Figure 4 depicts these regions denoted by

Rj = {(x1, x2) ∈ R2 : maxi{si(xi)} = s(xj)}.

It illustrates how the dynamics evolve across the state

space. In particular, Figure 4(a) illustrates how two
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sample trajectories, starting at initial states in R3 and R2,

reach a neighborhood close to the predicted IFD value.

Figure 4(b) shows two state trajectories with equal initial

states. Note that as we approach the IFD, fluctuations in

the state trajectory diminish, a consequence of the stability

properties of the model.
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Fig. 4. Regions Rj = {(x1, x2) ∈ R2 : maxi{si(xi)} = s(xj)}; (a)
data trajectory; (b) state trajectory.

Finally, we illustrate how the tendency of individuals to

switch between options seems to affect the resulting degree

of matching. Figure 5 shows the mean value of the sensitivity

parameter a as a function of the total number of individuals

changing options. Error-bars indicate one standard deviation

for 30 simulations runs. It suggests that as the reallocation

of choices increases, the value of the sensitivity parameter

increases as well.

V. CONCLUSIONS

The proposed model resembles the outcome of decision-

making mechanisms leading to an IFD-like allocation with

undermatching. This allocation pattern implies that indi-

viduals have an equal probability of success according to

both social and environmental determinants (regardless of

the initial distribution of choices). Simulations show that

when undermatching is present the ratios representing the

distribution of individuals is less extreme than the ratios

representing the distribution of resources, i.e., individuals

tend to distribute their choices in such a way that fewer
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Fig. 5. Number of individuals changing options. Each point represents 30
simulation runs.

individuals choose the options with the most resources. To

capture the effect of loss aversion on the IFD (i.e., the impact

of being more displeased with losses than with equivalent

gains) is an important direction for future research.
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