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Abstract— Models of discrete event systems combine ideas
from control theory and computer science to represent the
evolution of distributed processes. We formalize a notion of
the invalidation of models presumed to describe dynamics
on networks, and introduce an algorithm to evaluate a class
of event–driven processes that evolve close to an invariant
and stable state. The algorithm returns the value true, if
according to the proposed notion of invalidation, the evolution
of empirical observations is inconsistent with the stability
properties of the model. To illustrate the approach, we represent
a generic decision–making process in which the marginal utility
of allocating agents to particular nodes rests on the well–known
concept in economy theory of the law of diminishing returns.

I. INTRODUCTION

Building network–based applications can help us under-

stand complex phenomena arising from distributed processes

[1], [2]. It is envisioned that applications that leverage the

cues and services of massive decision–makers, often referred

to as agents, replace more vulnerable and costly centralized

systems. Discrete event systems provide an abstract rep-

resentation of the pattern (sequence) of events underlying

the tangled economies on which these applications generally

operate. The ability to predict the evolution of an event–

driven process depends on the extent to which a particular

representation (model) describes the dynamic behavior of its

empirical counterpart [3].

Checking for consistency with the data forms an important

step in addressing the invalidation problem for dynamic

models [4]–[6]. The work in [4] introduces an invalidation

technique for continuous–time models that rests on functions

reminiscent of Lyapunov functions called barrier certificates.

Certificates evaluate whether a model, and its feasible set

of parameters, are consistent in the sense that the evolution

of the data does not contradict the possible state trajectories

generated by the set of differential equations (i.e., certificates

divide the state space into regions that trajectories starting

from a given set of initial states cannot reach). While finding

a proper certificate is in general an NP–hard problem, the

technique in [4] addresses the case where the vector fields

are polynomials, and the initial, final, and parameter sets

can be described by polynomial equalities and inequalities

(semi–algebraic sets). For this particular case, the sum of

square (SOS) decomposition provides a tractable computa-

tional relaxation [7]. Using SOS decomposition, the work

in [8] introduces semi–definite programs to approximate
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SOS decomposition and evaluate dynamics represented by

difference equations [9], [10]. For discrete event systems,

however, because state trajectories evolve at asynchronous

instants of time, the construction of certificates cannot derive

from SOS decomposition.

This paper proposes a notion of invalidation for these types

of systems. In particular, we present sufficient conditions

that would make a model inconsistent with an available set

of data. As in [4], constructing a function that serves as a

certificate rests on the stability properties of the model. Based

on the identified conditions, we propose an algorithm to

evaluate models presumed to describe dynamics on networks.

To illustrate the approach we formulate a generic allo-

cation problem as a distributed optimization process where

agents approach resource sites (i.e., choose destination

nodes) that maximize their marginal gains according to the

law of diminishing returns. The outcome of the matching

process of agents to resources resembles a solution concept

called the ideal free distribution (IFD) where the underlying

decision–making mechanism not only depends on the quality

of resources but also on the number of agents allocating their

efforts to the same resource [11]. We compare the dynamics

underlying of the IFD with data on the balancing of units

of load in parallel computing [12]. While the distribution of

load reaches the same equilibrium as the generic allocation

model, our algorithm shows that the stability properties of

the model are inconsistent with the evolution of the data.

In other words, the proposed notion of invalidation rejects

the agents’ strategy of diminishing returns as a plausible

mechanism behind the balancing of load.

The remainder of this work is organized as follows:

Section II introduces a generic allocation problem used

to illustrate a dynamic network process. We model the

allocation process in Section III and present analytical re-

sults that guarantee that the IFD is stable (Proposition 1).

Section IV formalizes the notion of invalidation for discrete

event systems (Definition 1) and identifies conditions that

evaluate a model using both the level sets (Theorem 1) and

gradient vectors of the Lyapunov function (Corollary 1). The

application of Theorem 1 and Corollary 1 to the allocation

model in Section III is presented in Section V. Section VI

draws some conclusions.

II. AN ALLOCATION PROBLEM

The generic problem of the optimal allocation of agents

across a network can be found across various disciplines,

including sociology, economics, engineering, and ecology.

When competing for a set of resources, the concept of the

IFD captures an optimal allocation that depends not only on
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the number of resources available at each node but also on

the number of agents sharing the same location. The word

“ideal” refers to the assumption that agents have perfect

sensing capabilities for simultaneously determining “utility”

in each of a finite number of nodes (assumed to be a correlate

of the quality of the available resource). The word “free”

indicates that agents can move at no cost and instantaneously

from any node directly to any other node at any time. Under

the above conditions, the allocation process takes place on a

fully connected network. The IFD is an invariant network

state where no agent can increase its marginal gain by

unilateral deviations from one strategy to another; hence at

the IFD all agents achieve equal marginal gains (i.e., the IFD

is in fact a Pareto optimum [13], [14]).

To capture agent dynamics under less restrictive condi-

tions, consider an undirected network G = (N ,A), where

N = {1, . . . , n + 1} represents the set of n + 1 nodes and

A represents the set of edges as 2–element subsets of N .

If {i, j} ∈ A, we say that nodes i, j ∈ N are adjacent.

The neighborhood Ni of node i is defined as the set of all

its adjacent nodes, i.e., Ni := {j ∈ N : {i, j} ∈ A}.
The network carries a fixed number of agents q > 0 (e.g.,

load) to be distributed across a set of nodes (e.g., a set of

interconnected computers). Agents can be transferred from

one node to another at no cost but only according to A.

Note that modeling the agent dynamics on a network G
relaxes to some extent the free assumption. To represent

dynamic behavior based on the law of diminishing returns,

let xi denote the number of agents, ui represent a utility

function associated to node i, and consider the following

assumptions on the network.

(A1) The network G is connected, without self–loops or

parallel edges.

(A2) Any node i ∈ N has a strictly increasing utility

function ui(xi) that is continuously differentiable and

strictly concave on R = [0, q]. The derivative of ui

with respect to its argument si(xi) := dui

dxi
(i.e., its

marginal utility function) is Lipschitz continuous on

R.

Let x, y ∈ R, x 6= y. Note that because si satisfies the

Lipschitz condition, there exists a positive constant Ki such

that under the usual metric on R we have

|si(x)− si(y)|

|x− y|
≤ Ki (1)

Furthermore, since si is strictly decreasing in R note that

si(x)− si(y)

x− y
< 0 (2)

The allocation process rests on marginal utility functions

of the form

si(xi) :=
wi

xi + 1
(3)

where wi > 0 characterizes the quality of the resources

available at node i (e.g., load processing rate) [15]. To

guarantee that all nodes have a positive number of agents

at the IFD, we assume that

q + n+ 1 > max
i∈N

{

1

wi

}

∑

i∈N

wi (4)

According to (3), ignoring the constant of integration, the

utility function associated to node i is given by

ui(xi) :=

∫

si(xi)dxi = wi ln(xi + 1)

The total utility function u is defined as

u : Rn+1 → R
+
0

(x1, . . . , xn+1) 7→
∑

i∈N
ui(xi)

where R
+
0 denotes the set of positive real numbers including

zero. Next, we formalize the dynamics of allocating agents

under the premise that the first agent to be allocated to node

i yields a greater increase in ui(xi) than the second and

subsequent agents.

III. A DISCRETE EVENT MODEL

Let ∆q be the simplex of all n + 1 tuples on Rn+1

constrained by the total number of available agents

∆q :=

{

(x1, . . . , xn+1) ∈ R
n+1 :

∑

i∈N
xi = q

}

Because it requires n states to represent the dynamics on G,

we define the set X as the projection of the simplex ∆q on

the n−dimensional space x1 . . . xn, so that

X := {(x1, . . . , xn) ∈ R
n : (x1, . . . , xn, xn+1) ∈ ∆q} (5)

Denote x = (x1, . . . , xn) and let X ∗ be the set defined by

X ∗ = {x ∈ X : si(xi) = sj(xj), ∀i, j ∈ N} (6)

Because of Assumption (A2), for a fixed q that satisfies (4),

there exists a unique state x
∗ = (x∗

1, . . . , x
∗
n) ∈ X

∗ such

that u(x∗
1, . . . , x

∗
n+1) is maximized if and only if si(x

∗
i ) =

sj(x
∗
j ) for all i, j ∈ N [16]. If every agent has the same

impact on any node (i.e., wi = wj for all i, j ∈ N ), the

IFD is achieved when there are the same number of agents

at each node and

X ∗ := {x ∈ X : xi = xj , ∀i, j ∈ N} (7)

When x
∗ ∈ X ∗, we denote henceforth the number of agents

at any node as x∗ (instead of x∗
i ).

The dynamics are governed by a discrete event system

represented by S = (X ,G, E , g, fe), where E denotes the set

of possible events that drive the processes on G. We denote an

event at time index k ∈ N as e(k), where N denotes the set of

all nonnegative integer numbers. For x(k) ∈ X , we say that

an event e(k) is active, if it belongs to an activation function

g (i.e., e(k) ∈ g(x(k)). Note that there is just one state at any

k, but there could be many active events. If at state x(k) an

active event e(k) occurs, the transition function fe generates

the state x(k + 1) defined by x(k + 1) := fe(k)(x(k)). Fur-

thermore, if there exists a deadlock at k, the only active event

is the null event e0, where fe0(x(k)) = x(k). For a fixed k,
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Ek = {e(0), e(1), . . . , e(k−1)} defines the finite sequence of

k events and E = {e(k), e(k+1), . . .} the infinite sequence

of events after and including k. The concatenation of the

sequences Ek and E defines the infinite sequence of events,

that is, EkE = {e(0), . . . , e(k−1), e(k), . . .}. By definition,

E0 represents the empty sequence of events. Let E denote

the set of all event trajectories in S .

The set X0 denotes the initial states of the system. If

x(0) ∈ X0, E(x(0)) is the set of all event trajectories starting

from x(0). Starting from x(0) and applying the sequence Ek

of k events such that EkE ∈ E(x(0)) the system reaches

the state x(k) defined by the function

F : X0 ×E× N → X
(x(0), Ek, k) 7→ x(k)

Note that F(x(0), Ek, k) defines the evolution of the system.

To define decision–making strategies that guarantee

any state trajectory starting from the set of initial

states X0 ⊆ X converges to the invariant set X ∗

(i.e., F(x(0), Ek, k)→ X
∗ for all x(0) ∈ X0 as k →∞),

we now specify E and g(x(k)).
Let

Mi := {j ∈ Ni : xj > xi} (8)

be the set of neighboring nodes with a number of agents

above that of node i. Let eji represent the reallocation of

αji agents from node j ∈Mi to node i, and

αji =
xj − xi

di + 1

where di represents the degree of node i
(i.e., the cardinality of the neighborhood Ni). Note that

αji ∈ R
+. Let Eα = {eji} be the set of all possible

reallocations of agents on the network G. The set of events

is given by the power set of Eα without the empty set, i.e.,

E = P(Eα) \ {∅}. This definition of E ensures that there

always exists an event that can occur. Note that an event

e(k) ∈ E is a set in which each element represents the

reallocation of agents from some node j ∈ N to neighboring

nodes.

An event e(k) is active at time index k
(denoted by e(k) ∈ g(x(k))) only if for all eji ∈ e(k),
j ∈ Mi. If an active event e(k) occurs with eji ∈ e(k),
we consider αji′ = 0 for all eji′ ∈ e(k). The allocation

strategy ensures that the number of agents at node i does

not exceed the local maximum in the neighborhood Ni.

Note that the proposed scheme does not require that we

know X ∗ explicitly.

If the event e(k) ∈ g(x(k)) occurs, the transition between

states is defined as

xi(k + 1) = xi(k)−
∑

{j:eij∈e(k)}

αij +
∑

{j:eji∈e(k)}

αji (9)

In other words, the number of agents at any node i ∈ N at

k+1 is equal to the number of agents at k minus the number

of agents that reallocate to neighboring nodes, plus the

number of agents reaching node i from neighboring nodes

inMi. Note that if x(k) ∈ X ∗ then the state x(k+1) ∈ X ∗

(i.e., X ∗ is invariant because Mi = ∅ for all i ∈ N ).
The following proposition characterizes the stability prop-

erties of X ∗.

Proposition 1: The invariant set X ∗ defined in (7) has a

region of asymptotic stability equal to X .

The proof of Proposition 1 is presented in

the supplement to this article available at

http://www.jfinke.org/public html/publications.html. There

we use

V(x) := max {x1, . . . , xn, q −
∑n

i=1xi} − x∗ (10)

as a Lyapunov function to show that the IFD (i.e., the

set in (7)) is an invariant and stable network state of the

model. Next, Section IV presents a notion of invalidation and

introduces an algorithm to evaluate whether the evolution of

empirical data is consistent with the stability properties. In

Section V we come back to (10) to evaluate the dynamics

underlying the IFD.

IV. INVALIDATION

To formalize the notion of invalidation of a model, we need

to introduce the following notation. Let ρ be the metric on

X and V a continuous Lyapunov function for an invariant

state X ∗. Define a level set of V corresponding to a real

value c as Lc := {(x1, . . . , xn) ∈ X : V(x1, . . . , xn) = c}.
Moreover, let {x̂} := {x̂(1), . . . , x̂(m)} be a finite data

trajectory of m points in the domain of V . We say that

the system S is invalidated by {{x̂},X ∗,X0} if the data

trajectory {x̂} is inconsistent with the stability properties of

X ∗. Formally, the invalidation of a discrete event system is

given by Definition 1.

Definition 1: A discrete event system S with an invariant

and stable set X ∗ and a set of initial states X0 is invalidated

by {{x̂},X ∗,X0} if there exist two neighborhoods of X ∗,

U1 ⊆ U2, and two time indices, k′ < k′′ ≤ m, such that the

following conditions are satisfied

(D1) F(x(0), Ek, k) ∈ U2, for all x(0) ∈ U1, all k ≥ 0 and

all Ek, EkE ∈ E(x(0)); and

(D2) x̂(k′) ∈ U1 ∩ X0 and ρ(x̂(k′′),U2) > 0.

The left plot of Figure 1 illustrates that any motion of the

system S starting from an initial state x(0) ∈ U1 (in partic-

ular x̂(k′)) must remain in the neighborhood U2 (according

to Condition (D1)). The right plot depicts how a finite data

trajectory {x̂} with x̂(k′′) such that ρ(x̂(k′′),U2) > 0 for

some k′′ contradicts the stability properties of the model (ac-

cording to Condition (D2)). The following theorem presents

sufficient conditions that would invalidate a discrete event

system S based on Definition 1.

Theorem 1: Let S be a discrete event system with an

invariant and stable set X ∗ and a set of initial states X0.

If there exist a real function V : X → R
+
0 , and a finite data

trajectory {x̂} with m points such that

(C1) V is a continuous Lyapunov function that guarantees

the stability of X ∗; and

140



x

x

x

x
x

x̂(1)

X

x̂(k′′)

x̂(k′)

X
∗

x

x

x

x
x

x̂(1)

X

x̂(k′)

X
∗

x

x

x

x

x

x

xx

xx
x

x

x

U1

U2

U1

x

U2

Fig. 1. Illustration of the notion of invalidation. Condition (D1) (left plot)
states that any trajectory starting from any initial state x(0) ∈ U1 (in
particular from x̂(k′)) remains in the neighborhood U2; Condition (D2)
(right plot) requires that the data trajectory {x̂} satisfies ρ(x̂(k′′),U2) > 0
for some x̂(k′′).

(C2) There exist k′ < k′′ ≤ m such that V(x̂(k′′)) >
V(x̂(k′)), with x̂(k′) ∈ X0

then S is invalidated by {{x̂},X ∗,X0}.

Proof: Suppose there exists a function V satisfying (C1)

and (C2). Let c1 = V(x̂(k′)), c2 = V(x̂(k′′)), and a ∈ R

be a constant such that c1 < a < c2. Define the closed sets

Ωc1 := {x ∈ X : V(x) ≤ c1}, Ωa := {x ∈ X : V(x) ≤ a},
Ωc2 := {x ∈ X : V(x) ≤ c2}. Note that Ωc1 ⊂ Ωa ⊂ Ωc2 .

Define La := {x ∈ X : V(x) = a} and Lc2 := {x ∈
X : V(x) = c2} as the level sets of V corresponding to

the values a and c2, respectively. Because La and Lc2 are

closed sets, and Ωc1 ∩La = ∅, Ωa∩Lc2 = ∅, there exist two

neighborhoods of X ∗, U1 and U2, such that Ωc1 ⊂ U1 ⊂ Ωa

and Ωa ⊂ U2 ⊂ Ωc2 . Let x(0) be any initial state in U1.

According to (C1) we know that V is non–increasing along

all possible motions of S starting at x(0). In other words

V(x(0)) ≥ V(F(x(0), Ek, k)) (11)

for all k > 0 and all Ek such that EkE ∈ E(x(0)). By

(11) we have V(F(x(0), Ek, k)) < a which implies that

F(x(0), Ek, k) ∈ U2. Condition (D1) is satisfied with the

established neighborhoods U1 and U2.

By construction and (C2), x̂(k′) ∈ U1 and

ρ(x̂(k′′),U2) > 0 which implies that Condition (D2)

is satisfied. Therefore, there exist two neighborhoods of X ∗,

U1 and U2, and two time indices, k′ < k′′ ≤ m such that

Conditions (D1) and (D2) are satisfied. The discrete event

system S is invalidated by {{x̂},X ∗,X0}.
Remark: Theorem 1 allows us, given an available set

of data, to narrow down the search for valid models. Note

that checking for consistency may rest on different stability

properties. Whether stronger types of stability are appropriate

depends on the application at hand.

Next, let∇V(x) denote the gradient vector of V at x ∈ X .

Algorithm 1 presents a procedure to invalidate a model using

gradient vectors associated to the Lyapunov function V under

the following assumption.

(A3) The level sets of V partition the state space into a

finite number of regions such that each region Ri has

a constant gradient vector and
⋂

Ri = X
∗.

Algorithm 1 Invalidation procedure

Requires: A Lyapunov function V and a finite trajectory

{x̂} of m data points

Returns: true if S is invalidated by {{x̂},X ∗,X0} or false

otherwise

11: Define k ← 1 and invalidation← 0
12: Suppose that x̂(k) ∈ Ri, x̂(k + 1) ∈ Rj

13: while invalidation 6= 1 and k 6= m do

14: Find the gradient ∇V(x̂(k))
15: Define the vector v ← x̂(k + 1)− x̂(k)
16: Find the angle θ between v and ∇V(x̂(k))
17: if i = j and 0 ≤ θ < π/2 then

18: invalidation← 1
19: else

10: Find the intersection point (P) of v with the level

10: set LV(x̂(k))

11: Let d1 ← ρ(x̂(k),P) and d2 ← ‖v‖
12: if d1 < d2 then

13: invalidation← 1
14: end if

15: end if

16: k ← k + 1
17: end while

18: if invalidation = 1 then

19: return true

20: else

21: return false

22: end if

Corollary 1: Let S be a discrete event system with a set of

initial states X0. Let V : X → R
+
0 be a Lyapunov function

that satisfies (A3) and proves the stability of the invariant

set X ∗. If Algorithm 1 returns the value true, then S is

invalidated by {{x̂},X ∗,X0}.

Proof: Let {x̂} be a finite data trajectory with m points

contained in the domain of V . Let x̂(k), x̂(k + 1) be two

consecutive data for some k ∈ {1, . . . ,m − 1} such that

x̂(k + 1) 6= x̂(k). Suppose that x̂(k + 1) ∈ Rj and

x̂(k) ∈ Ri. Define the vector v := x̂(k + 1)− x̂(k) and let

θ ∈ [0, π] be the angle between the vectors v and ∇V(x̂(k)).
Suppose Algorithm 1 returns the value true and consider the

following two cases.

If i = j, then the gradient vector does not leave region

Ri. For 0 ≤ θ < π/2 the dot product v · ∇V(x̂(k)) is

greater than zero and the orthogonal projection of ∇V(x̂(k))
on the vector v has the same orientation as v. Because the

gradient vector ∇V(x̂(k)) points in the direction in which

V grows the fastest between x̂(k + 1) and x̂(k), it causes

the function V to increase in the direction of v. As a result

V(x̂(k + 1)) > V(x̂(k)), and according Theorem 1, S is

invalidated by {{x̂},X ∗,X0}.
If i 6= j or π/2 ≤ θ < π, define d1 := ρ(x̂(k),P) and

d2 := ‖v‖, where P is the intersection point of v (or any
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vector that lies on v) with the level set LV(x̂(k)). Note that

if d1 < d2, then V(x̂(k+1)) > V(x̂(k)), because P lies on

v and LV(x̂(k)) = LV(P). According Theorem 1, the discrete

event system S is invalidated by {{x̂},X ∗,X0}.

V. APPLICATION

This section applies Definition 1 to the generic allocation

model presented in Section III. For the function V in (10)

the region Ri is given by

Ri := {(x1, . . . , xn) ∈ X : max{x1, . . . , xn+1} = xi}
(12)

Because
⋃

i∈N Ri = X , the level sets of V parti-

tion the state space into a finite number of regions.

Furthermore, (x1, . . . , xn) ∈
⋂

i∈N Ri if and only if

max{x1, . . . , xn+1} = xi for all i ∈ N implying

x1 = · · · = xn+1

(
⋂

i∈N Ri = X
∗
)

. Now, the gradient

vector of V satisfies:

1) Suppose max{x1, . . . , xn+1} = xi, i 6= n + 1. Then

V(x1, . . . , xn) = xi−x∗ and (x1, . . . , xn) ∈ Ri. Thus

∇V(x1, . . . , xn) = ξi, where ξi

ξi :=

{

1 at the ith position

0 otherwise

is an n–dimensional vector.

2) Suppose max{x1, . . . , xn+1} = xn+1. Then

V(x1, . . . , xn) = xn+1−x
∗ and (x1, . . . , xn) ∈ Rn+1.

Since xn+1 = q − x1 − · · · − xn we have

V(x1, . . . , xn) = q − (x1 + · · · + xn) − x∗

and ∇V(x1, . . . , xn) is the n–dimensional vector

−(1, . . . , 1).

Note that when n = 2

∇V(x1, x2) =







(1, 0) if (x1, x2) ∈ R1

(0, 1) if (x1, x2) ∈ R2

−(1, 1) if (x1, x2) ∈ R3

Thus, because each region has a constant gradient vector, the

model satisfies Assumption (A3).

To evaluate to what extent the generic allocation model

may capture the dynamics of a network of computers bal-

ancing load, consider the data presented in [12], resulting

from a balancing algorithm that allocates 12000 agents

(load units) across three nodes. Table I shows the empirical

initial distribution of load across New Mexico, Taipei, and

Frankfurt. The simplex ∆q on which the dynamics evolve is

∆q = {(x1, x2, x3) ∈ R
3 : x1 + x2 + x3 = 12000}

Because, given x1 and x2, the number of agents at node 3

Node 1 Node 2 Node 3

Location New Mexico Taipei Frankfurt

Initial load distribution 6000 4000 2000

TABLE I

INITIAL DISTRIBUTION OF LOAD (AGENTS) ACROSS NODES

(COMPUTERS). DATA FROM [12].
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Fig. 2. Evolution of 12000 agents across 3 nodes with
x̂(1) = (6000, 4000).
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Fig. 3. Invalidation of S. The triple {{x̂},X ∗,X0} invalidates the model
at k = 3.

is known, the set of states is

X = {(x1, x2) ∈ R
2 : (x1, x2, x3) ∈ ∆q}

The invariant set X ∗ = {x ∈ X : x1 = x2 = 4000}
represents the IFD. Because X ∗ is asymptotically stable in

the large, X0 = X = R2.

Figure 2 shows the data trajectory

{x̂} = {x̂(1), . . . , x̂(45)} of the evolution of load

at each node across the network. There are several

peaks when evaluating the Lyapunov function along

{x̂}. In particular, the data points corresponding to

x̂(2) = (4419, 4797) and x̂(3) = (3953, 4924),
yield V(x̂(2)) = 797 < V(x̂(3)) = 924 and thus

V(x̂(3)) − V(x̂(2)) > 0. The discrete event system S is

invalidated by {{x̂},X ∗,X0} based on Theorem 1. Figure 3

shows that while the trajectory {x̂} converges to the IFD

(V converges to zero), the trajectory jump from the level set

L797 (at k = 2) to the level set L924 (at k = 3), invalidates

the model.
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Next, consider invalidating the model by applying

Algorithm 1.

Example: At k = 1 we have x̂(1) = (6000, 4000), and

the value of variable invalidation in Algorithm 1 is zero. At

k = 2, x̂(2) = (4419, 4797). The procedure completes the

following steps.

1) Find the gradient ∇V(x̂(2)). Because x̂(2) ∈ R2, then

∇V(x̂(2)) = (0, 1).
2) Define the vector v := x̂(3) − x̂(2). Since x̂(3) =

(3953, 4924), then v = (−466, 127).
3) Find the angle θ between the vectors v and ∇V(x̂(2)).

Because cos θ = ∇V(x̂(2))·v
‖∇V(x̂(2))‖‖v‖ , θ = 0, 41π. Thus,

0 ≤ θ <
π

2
, Algorithm 1 returns the value true, and S

is invalidated by {{x̂},X ∗,X0}.

VI. CONCLUSION

Our work formalizes a notion of invalidation of dynamic

network processes modelled using a class of discrete event

systems with an invariant and stable network state (Def-

inition 1). A discrete event system is invalidated if the

evolution of empirical observations is inconsistent with the

stability properties of the model. Based on Definition 1

we identify sufficient conditions on the Lyapunov function

that invalidate the model (Theorem 1). Using Theorem 1,

we introduce an algorithm that applies the gradient vector

of the Lyapunov function to evaluate whether the stability

properties are inconsistent with the data (Corollary 1).

To illustrate the proposed approach we formulate a generic

allocation problem of agents across nodes in which the

marginal utility of allocating agents rests on the law of

diminishing returns. The optimal distribution is achieved

when the same number of agents are distributed across each

node. We prove that this network state is stable.

To evaluate the validity of the allocation model to rep-

resent the dynamics of load balancing algorithms we use

data on the balancing of load across an empirical computer

network. While the allocation model reaches the same equi-

librium as the balancing of load, applying Theorem 1 or

Corollary 1 will show that the stability properties of the

model are inconsistent with the data.
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