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Abstract— Many real-world networks consist of numerous in-
terconnected groups which, as communities, display distinctive
collective behavior. The division of a network into communities
- groups of nodes with a high density of ties within but a
low density of ties between groups - underlies the structure of
social and technological networks. In human communities, for
instance, individuals may group together according to special
interest, occupation, intent, or belief, with tendency to establish
stronger ties with individuals who are similar to themselves.
Here, we introduce a formal framework for the formation of
community structures from homophilic relationships between
individuals. Stochastic modeling of local relationships allows
us to identify a wide class of agent interactions which lead to
the formation of communities and quantify the extent to which
group size affects the resulting structure.

I. INTRODUCTION

Network theory focuses on rendering quantitative relation-

ships into abstract representations (graphs) that allow us to

characterize to what extent an underlying set of relationships

may contribute to both the evolution of the structure itself and

the evolution of dynamics on large interconnected systems.

Network models define a set of nodes (e.g., individuals as

agents) with ties to other nodes (which may change over

time) where the behavior of each agent on a network is

conditioned (directly or indirectly) by the behavior of all

other agents sharing the same connected component. The

collective outcome generally depends on both the nature of

the agents (i.e., their decision-making) and the strength of

the ties between them (i.e., the degree to which an agent’s

decision-making affects other agents) [1]. Often, through a

process of distributed decision-making, networks gradually

develop a distinctive structural pattern, even without central-

ized information or coordination schemes. The lofty aim of

network theory is to provide tools that enables us to define

quantitative relationships from reams of amorphous data,

enhancing our understanding of the emergence of collective

outcomes not foreseen from individual behavior [2].

In trying to capture empirical patterns that reflect the

structure of the relationships between agents, common char-

acterizations of network models include: (i) Homophily:

Agents tend to associate with others who are similar to

themselves [1]. (ii) Transitivity: If agent A shares a tie with

B and B with C, then there is an increased probability that

A will also share a tie with C [3]. (iii) Community structure:
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Networks tend to divide naturally into groups (modules) with

dense ties within but sparser ties between them [4].

Several studies identify homophily as a significant de-

terminant for collective outcomes in social networks [5],

including empirical patterns of transitivity [6], cultural evo-

lution [7], and friendship formation [1]. For example, in

relation to the size of racial groups, the authors of [1] observe

that larger groups exhibit higher homophily indices than

smaller ones. They suggest that the formation of ties depends

on both the conditions of belonging to a group with distinct

characteristics and the size of these groups.

Here, we present an agent-based model that allows us to

capture the dynamics of the relationships between agents

and the formation of community structures in a directed

network. To our knowledge the proposed mechanisms is

novel in that it generates network substrates with community

structures (i) from homophilic interaction between agents

(i.e., agents may obey one of two general rules which tend to

establish or degrade ties to agents that are unlike themselves);

and (ii) from a stochastic Markov process with transition

probabilities that are a function of both the homophily index

of each group and their relative sizes.

The remainder of this paper is organized as follows:

Section II introduces a model of the interaction of agents

of two different types. Section III presents analytical results

which quantify the effect of group size on the interaction

of agents (Lemma 1), showing how agents belonging to

the majority drive homophily in network ties. Our main

result (Theorem 1) establishes sufficient conditions for the

formation of a community for the majority agents. Unlike

them, the minority agents ultimately establish significant ties

to agents of the majority group (Theorem 2). Section IV

presents some numerical results and applies the proposed

framework to generate networks with a desired number of

communities. The proofs of the lemmas and theorems are

available at http://jfinke.org/public html/publications.html.

II. THE MODEL

The network of n ∈ N agents is composed of two groups.

Each group represents a type of agent denoted by ℓ ∈ {0, 1}
(e.g., agents of the same type may share traits, interests,

schedules, etc.). Let N = {1, . . . , n} be the set of all agents,

ti : N → {0, 1} the type associated to agent i ∈ N ,

Nℓ = {i ∈ N : ti = ℓ} the set of agents of type ℓ, and

nℓ = |Nℓ| the size of the set Nℓ (suppose n0 ≤ n1).

A directed graph G = (N, M) captures the interaction

between agents. The nodes belonging to N represent the

agents and the links associated with M represent some kind

of tie between a pair of agents (e.g., affection, dependency,
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support). The matrix M = {mij}, mij ∈ {0, 1}, quantifies

the relationships between agents i and j. In particular,

∀i, j ∈ N , i 6= j, mij = 1 only if there exists an established

relation from i to j (e.g, agent i chooses to befriend with

agent j), and mij = 0 otherwise. Network relations may be

reciprocal, but ∀i ∈ N , mii = 0.

Let Qi = {j ∈ N : mij = 1} represent the set of outgoing

neighbors with whom agent i maintains some relation, and

Q′
i = {j ∈ Qi : ti = tj} the outgoing neighbors with whom

it shares the same type. Each agent i ∈ N may have a vari-

able number of incoming neighbors but has a fixed number

of outgoing neighbors (e.g., because of limited resource to

establish this links). Let q = |Qi|, q′i = |Q′
i| ≤ q, and

xi =
q′i
q

(1)

represents the state of the agent i ∈ N , i.e., the

proportion of neighbors of the same type. The vector

x(k) = [x1(k), . . . , xn(k)]
⊤

denotes the state of the entire

network at time k. To specify the assumptions on our model,

we need to introduce the following definitions.

Definition 1: A network G is said to show total segrega-

tion if for all i ∈ N , xi = 1.

In other words, a network shows total segregation if only

if each agent of type ℓ connects selectively to agents of the

same type
(

∀j ∈ Nℓ, ∀j ∈ Qi, j ∈ Q′
i

)

.

Definition 2: The homophily index of the group of type ℓ
is given by

hℓ =
1

nℓ

∑

i∈Nℓ

xi (2)

Note that the homophily index represents the average

fraction of agents of the same type that share ties across

the entire network.

Definition 3: A network G is said to be type-neutral if for

all i ∈ N , xi = 0.5.

Characterizing G as type-neutral implies that for each

group of type ℓ the homophily index hℓ = 0.5. The converse,

however, is not necessarily true.

Definition 4: The set Nℓ is said to show total homophily

if hℓ = 1 and total heterophily if hℓ = 0.

Note that if both groups of the network show total ho-

mophily then G is totally segregated.

Definition 5: The set Nℓ forms a community if

hℓ > 0.5.

In other words, a group is considered a community if

the average number of ties to neighbors of the same type

is greater than the average number of ties to neighbors of

different type. The model rests upon three main assumptions:

first, we need to describe some constraints on the structure

of the network; second we specify two general conditions on

the establishment of ties from homophilic relationships; and

third we constrain the occurrence of events that lead to the

formation of communities.

Assumption 1 (Network requirements): The network G
satisfies:

a. Each set Nℓ can show total homophily

(q < min{nℓ}).

b. An agent can connect to both types of agents (q > 2).

For a group of agents Nℓ to show total homophily each

agent i ∈ Nℓ can establish at most nℓ−1 ties. Since agents of

both types have the same number of outgoing neighbors we

let q ≤ min{nℓ}− 1 be bounded by the size of the minority

group (a network showing total segregation may support at

most n(min{nℓ} − 1) ties).

Assumption 2 (Agent preferences): The decision to estab-

lish relationships between agents is stochastic but must obey

one of the following two rules:

a. Agent i tends to degrade ties to agents that are unlike

itself by disconnecting from an agent j ∈ Qi, ti 6= tj ,

and connecting to an agent j′ /∈ Qi.

b. Agent i tends to establish ties to agents that are unlike

itself by connecting to an agent j′ /∈ Qi, ti 6= tj′ , and

disconnecting from an agent j ∈ Qi.

According to Assumption 2a, agent i may disconnect from

a neighboring agent j of different type and connect to another

agent j′ /∈ Qi. According to Assumption 2b, agent i may

connect to another agent j′ /∈ Qi of different type that is not

currently a neighbor and disconnect from a neighboring agent

j. Assumption 2 guarantees that the number of outgoing

neighbors remains constant for all agents.

Let ei represent the decision by agent i to

reestablish its current relationships (according

to Assumption 2a or 2b). At a fixed time, let

Ea = {ei : i ∈ N, ti = ℓ, ti 6= tj , xi ≤ hℓ}
denote the set of all possible occurrences that satisfy

Assumption 2a for any agent i of any type ℓ such that

its state does not exceed the homophily index hℓ. Let

Eb = {ei : i ∈ N, ti = ℓ, ti 6= tj′ , xi ≥ hℓ} denote the

set of all possible occurrences that satisfy Assumption 2b

for any agent i of any type ℓ such that its state exceeds

the homophily index hℓ. An event ei occurs at time k, if

ei ∈ g(x), where g(x) is a function that enables an event

according to the following.

Assumption 3 (Event trajectories): The occurrence of

event ei is stochastic but satisfies the following conditions:

a. The homophily index of the group Nℓ ranges between

0 < hℓ < 1.

b. Agents are equally likely to establish or degrade ties to

agents that are unlike themselves (both kinds of events

occur with equal probability).

c. The agents j′ and j to whom agent i connects and

disconnects, respectively, are selected randomly from

an uniform distribution.

When ei ∈ g(x) occurs, the next state of the entire network

x(k + 1) is defined by x(k + 1) = fe(x(k)) where fe is an

operator that defines the state transitions. If at time k′ the

network satisfies h0(k
′), h1(k

′) ∈ {0, 1}, then Ea = Eb = ∅
and there is no enabled event. We model the deadlock of the

network by defining e0 such that ∀k ≥ k′, e0 ∈ g(x(k)),
xi(k +1) = xi(k

′) and hℓ(k +1) = hℓ(k
′). If ei ∈ g(x(k)),

ei 6= e0, then fe(x(k)) = x(k + 1) is given by

xi(k + 1) = xi(k) + µi(k) (3)
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where

µi(k) =











0, if ti 6= tj , ti 6= tj′ ;

1/q, if ti 6= tj , ti = tj′ ;

−1/q, if ti = tj , ti 6= tj′ .

The state of agent i at time k + 1, xi(k + 1), is the state

of agent i at time k plus a factor µi(k) that quantifies the

increase (decrease) in the agent’s state from establishing a

new tie to an agent of the same type (to an agent of different

type, respectively). The enable function g(x) together with

the state transitions fe(x) define the evolution of the structure

of the network.

III. ANALYTIC RESULTS

Assumptions 1-3 specify minimal requirement that will

allow us to introduce a local mechanism to generate com-

munities structures without any form of centralized coordi-

nation. Here, we first analyze the evolution of ties driven by

the probability of occurrence of both rules defined above.

We then determine the transition probabilities of the type ℓ
homophily index and identify conditions which lead to an

aggregate behavior of agents of type ℓ.

A. Probabilities of Rules

If ei ∈ g(x), ei ∈ Ea and ti = ℓ
(

xi ≤ (q−1)/q
)

, agent i
disconnects from agent j ∈ Qi, ti 6= tj , connecting to agent

j′ /∈ Qi. It must be the case that

(i) ti = tj′ with probability

P [ti = tj′ ] =
nℓ − q′i − 1

n − q − 1
=

nℓ − qxi − 1

n − q − 1
(4)

(ii) ti 6= tj′ , tj′ = z with probability

P [ti 6= tj′ ] = 1 − P [ti = tj′ ] =
nz − (q − q′i)

n − q − 1
(5)

where n − q − 1 is total number of agents that agent i may

establish ties to, nℓ−q′i−1 is the number of same-type agents,

and nz − (q− q′i) is the number of different-type agents that

are not currently neighbors of agent i. Equations (4) and (5)

suggest that group size affects the likelihood that agent i
shares the same type with a randomly selected agent j′.

On the other hand, group size does not affect how

agent i establishes ties according to Assumption 2b. If

ei ∈ g(x), ei ∈ Eb, and ti = ℓ
(

1/q ≤ xi

)

, agent i connects

to agent j′ /∈ Qi, ti 6= tj′ , disconnecting from agent j ∈ Qi.

It must be the case that

(i) ti = tj with probability

P [ti = tj ] = xi (6)

(ii) ti 6= tj with probability

P [ti 6= tj ] = 1 − P [ti = tj ] =
q − q′i

q
= 1 − xi (7)

where q − q′i is the number of neighbors of different type.

Note that (6) and (7) are a function of the state of the agent

i, but do not depend on group size nℓ.

The following lemma identifies the conditions on the size

of the groups that guarantee that the probability that agent

i with ti = 1 disconnects from a same-type agent j is less

(more for ti = 0) than the probability that agent i connects

to a same-type agent j′.

Lemma 1 (Group size effect on agent preferences):

Suppose Assumptions 1-3 hold and n1 > (q − 1)n0 + 1.

For every agent i ∈ N , 0 < xi < 1, disconnecting from an

agent j to connect to an agent j′

P [ti = tj ] < P [ti = tj′ ], if ti = 1

and

P [ti = tj ] > P [ti = tj′ ], if ti = 0.

B. Homophily Index Transitions

Next, we apply Lemma 1 to determine the transition

probabilities between homophily indices. First, using (2)

and (3), if ei ∈ g(x) and ti = ℓ, the homophily index of

type ℓ at time k + 1 is given by

hℓ(k + 1) = hℓ(k) +
µi(k)

nℓ

Variations in the homophily indices ∆hℓ = µi/nℓ depend

on the size of the group ℓ. Let m > 0 represent the mth

element of the set Hℓ =
{

b/(qnℓ) : b = 0, . . . , qnℓ

}

be

the set of all possible values of hℓ. For convenience, let

cℓ = |Hℓ| = qnℓ + 1. The transition probabilities between

homophily indices are defined as

pmv = P [hℓ(k + 1) = wv|hℓ(k) = wm]

Using (2), the transition probabilities Nℓ are

pmv =















































































0, if m ∈ {1, cℓ}

and v 6= m;
nℓ−qwm−1
2(n−q−1) , if m ∈ {2, . . . , cℓ − 1}

and v = m + 1;
wm

2 , if m ∈ {2, . . . , cℓ − 1}

and v = m − 1;

1 − nℓ−qwm−1
2(n−q−1) − wm

2 , if m ∈ {2, . . . , cℓ − 1}

and v = m;

1, if m ∈ {1, cℓ}

and v = m.
(8)

Taking into account that the events defined accord-

ing to Assumption 2a and 2b occur with equal like-

lihood, note the following. First, the homophily in-

dex of Nℓ may change only if wm /∈ {0, 1}
(

m /∈ {1, cℓ}
)

. Thus, pmv = 0 for v 6= m and pmv = 1
for v = m. If m ∈ {2, . . . , cℓ − 1} and v = m + 1, the
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second term in (8) results from

pmv =
1

2nℓ

∑

i∈Nℓ

P [ti = tj′ ]

=
1

2(n − q − 1)

(

nℓ − 1 −
q

nℓ

∑

i∈Nℓ

xi

)

=
nℓ − qwm − 1

2(n − q − 1)

Moreover, if m ∈ {2, . . . , cℓ − 1} and v = m − 1, the third

term results from

pmv =
1

2nℓ

∑

i∈Nℓ

P [ti = tj ] =
1

2nℓ

∑

i∈Nℓ

xi =
wm

2

And similarly, if m ∈ {2, . . . , cℓ − 1} and v = m, the fourth

term results from

pmv =
1

2nℓ

(

∑

i∈Nℓ

P [ti 6= tj′ ] +
∑

i∈Nℓ

P [ti 6= tj ]

)

=
1

2nℓ

(

2nℓ −
∑

i∈Nℓ

P [ti = tj′ ] −
∑

i∈Nℓ

P [ti = tj ]

)

= 1 −
nℓ − qwm − 1

2(n − q − 1)
−

wm

2

Note that the transition probabilities defined in (8) satisfy

0 ≤ pmv ≤ 1, and for any m,
∑

all v pmv = 1. Finally note

that, the current value of the homophily index of the group

Nℓ at time index k depends on its value at k − 1 but not

on values further in the past. In other words, a homogeneous

discrete-time Markov chain characterizes the evolution of the

structure of the network.

When m ∈ {1, cℓ}, pmv = 0 for all v 6= m; therefore

{w1} and {wcℓ
} are closed subsets of Hℓ with no transi-

tion to any homophily index outside {w1} or {wcℓ
}. For

m ∈ {2, . . . , cℓ − 1}, wm ∈ Hℓ cannot be reached

from {w1} or {wcℓ
}, i.e., the chain is reducible. Because

p11 = pcℓcℓ
= 1, w1 and wcℓ

are absorbing. Next, let

Tℓ = {w2, . . . , wcℓ−1}, Tℓ ⊂ Hℓ, denote the set of all

possible homophily indices that are not absorbing.

We denote the transitions probabilities from the homophily

index wm ∈ Tℓ to the adjacent homophily indices by

am = P [hℓ(k + 1) = wm+1|hℓ(k) = wm] = pm(m+1)

bm = P [hℓ(k + 1) = wm−1|hℓ(k) = wm] = pm(m−1)

Using (8) note that for m ∈ {2, . . . , cℓ − 1} the probability

pmm = 1 − am − bm. For m = 1, a1 = p12 = 0 and

p11 = 1−a1 = 1. Moreover, for m = cℓ, bcℓ
= pcℓ(cℓ−1) = 0

and pcℓcℓ
= 1 − bcℓ

= 1. The transition diagram for the

homophily indices is shown in Fig. 1.

Let rℓ be the difference among am and am+1,

m ∈ {2, . . . , cℓ − 2}. Using (8) we obtain

rℓ = am − am+1

=
nℓ − qwm − 1

2(n − q − 1)
−

nℓ − qwm+1 − 1

2(n − q − 1)

=
1

2nℓ(n − q − 1)
(9)

1 2 cℓ − 1 cℓ

1 − a1

a1 acℓ−1

1 − bcℓ

b2

1 − a2 − b2

bcℓ

1 − acℓ−1 − bcℓ−1

Fig. 1. Transition diagram for the homophily indices for group Nℓ under
Assumptions 1-3, a1 = bcℓ

= 0 (only under a relaxed set of event

trajectories, see Assumption 3† and Assumption 3*, may a1 > 0 and/or
bcℓ

> 0).

Note that since q < n− 1, rℓ > 0, and rℓ = 0 as n → ∞,

we know that am ≥ am+1. Next, using (8) and (9) and the

definitions of a2 and w2 yields

a2 = p23 =
nℓ − qw2 − 1

2(n − q − 1)
= (n2

ℓ − nℓ − 1)rℓ (10)

Applying the definition of rℓ for m ∈ {3, . . . , cℓ − 1}

am = am−1 − rℓ = a2 − (m − 2)rℓ (11)

Moreover, for m ∈ {3, . . . , cℓ−1}, the difference between

bm and bm−1 yields

bm − bm−1 =
wm − wm−1

2
=

1

2qnℓ

=
w2

2
= p21 = b2

Note that b2 > 0 and bm−1 < bm. Using (8) and the

definition of b2 yields

bm = bm−1 + b2 = (m − 1)b2 (12)

From a2 and b2 we know the probabilities am and bm

for any m ∈ {3, . . . , cℓ − 1}. These transition probabilities

will determine the formation of community behavior of both

groups.

C. Reducible Markov Chains Analysis

Given that the Markov chain is reducible, we now compute

the probability that the chain enters one closed set before the

other. Let qm1 be the probability that the chain starting at

wm ∈ Tℓ visits w1 before it visits wcℓ
, defined by

qm1 = P [km1 < kmcℓ
] (13)

where km1 = min{k ≥ 0 : hℓ(0) = wm, hℓ(k) = w1} and

kmcℓ
= min{k ≥ 0 : hℓ(0) = wm, hℓ(k) = wcℓ

}. Note that

q11 = 1 and qcℓ1 = 0.

Lemma 2: The probability that the group Nℓ starting

at 0 < hℓ(0) < 1 shows total heterophily before total

homophily is

qm1 =
γm

1 + γm

q(m−1)1 (14)

where

γm =

cℓ−1
∑

i=m

i
∏

j=m

bj

aj

(15)
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We apply Lemma 2 to both types of agents in order to

reach the following result.

Lemma 3: Suppose the network G(0) is type-neutral

and Assumptions 1-3 hold. Furthermore, suppose the ratio

n0/n1 < 1/(q − 1) as n0 → ∞. Then the majority group

N1 shows total homophily before total heterophily with

probability 1. The minority group N0 shows total heterophily

before total homophily with probability 1.

As a corollary of Lemma 3 it can be show which of the

two absorbing homophily index each group Nℓ visits before

the other, starting at a homophily index wm ∈ Tℓ such that

m ∈ {2, . . . , cℓ − 1} for ℓ = 1 and m ∈ {2, . . . , (cℓ + 1)/2}
for ℓ = 0. We cannot however, predict which absorbing

homophily index the minority group N0 visits if it starts

at any homophily index wm, m ∈ {(c0 + 3)/2, . . . , c0 − 1}.

To compute the probability that the reducible Markov chain

enters a closed set
(

{w1} or {wcℓ
}
)

, let ρm be the probability

that the group Nℓ starting from the current homophily index

wm ∈ Tℓ, first revisits wm within a finite number of steps,

ρm = P [min{k > 0 : hℓ(0) = wm, hℓ(k) = wm} < ∞]

A homophily index wm ∈ Tℓ is said to be transient if

ρm < 1, and it is said to be recurrent if ρm = 1. In other

words, a transient homophily index may be visited again, but

with the positive probability 1− ρm it will not; on the other

hand, a recurrent homophily index will definitely be visited

again [8].

Lemma 4: Suppose Assumptions 1-3 hold. Furthermore,

suppose the ratio between groups n0/n1 < 1/(q − 1) as

n0 → ∞. All homophily indices 0 < hℓ < 1, ℓ ∈ {0, 1}, are

transient.

As in [8], to compute the probability that the reducible

Markov chain enters the closed set {w1}, let ρm1 be the

probability that the type ℓ chain starting at the transient

homophily index wm ∈ Tℓ

ρm1 = P [hℓ(k) = w1 for some k > 0|hℓ(0) = wm]

= pm1 +
∑

r:wr∈Tℓ,|r−m|≤1

ρr1pmr (16)

Note that (16) takes into account that either the chain enters

w1 at k = 1, or that it enters a transient homophily index

at k = 1 and eventually reaches w1. The summation term

in (16) captures the homophily index wm and all transient

homophily indices which are adjacent to wm. Let βj = bj/aj

where bj (aj) is the probability of transitioning from the

current homophily index to the lower (higher, respectively)

homophily index.

Lemma 5: The probability ρm1 for the group Nℓ starting

at 0 < hℓ(0) < 1 is

ρm1 =







































ρ21

(

1 +

m−1
∑

i=2

i
∏

j=2

βj

)

−
m−1
∑

i=2

i
∏

j=2

βj ,

if m ∈ {3, . . . , cℓ − 2}; (17a)

βcℓ−1

1 + βcℓ−1
ρ(cℓ−2)1,

if m = cℓ − 1. (17b)

Using Lemma 5 we can now state our main results.

Theorem 1: Suppose Assumptions 1-3 hold. Furthermore,

suppose the ratio n0/n1 < 1/(q − 1) as n0 → ∞.

The majority group N1 starting at h1(0) > 0 shows total

homophily with probability 1 (i.e., the probability that the

majority group N1 starting at any 0 < h1(0) < 1 enters the

absorbing homophily index h1 = 0 is limn0→∞ ρm1 = 0).

Theorem 2: Suppose Assumptions 1-3 hold. Furthermore,

suppose the ratio n0/n1 < 1/(q − 1) as n0 → ∞. The mi-

nority group N0 starting at h0(0) < 1−1/(qn0) shows total

heterophily with probability 1 (i.e., the probability that the

minority group N0 starting at any 0 < h0(0) < 1− 1/(qn0)
enters the absorbing homophily index h0 = 0 is

limn0→∞ ρm1 = 1).

According to Theorems 1 and 2, agents belonging to N1

ultimately connect selectively to agents of the same type,

and agents belonging to N0 ultimately connects selectively

to agents of a different type. Note that the network G does

not show total segregation.

IV. SIMULATION RESULTS

We implement the proposed model and illustrate the effect

of different assumptions on the resulting network. First, we

relax Assumption 3 in order to get a network G where the

majority (minority) group cannot reach total homophily (total

heterophily, respectively).

Assumption 3†: The occurrence of event ei is stochastic

but satisfies the following conditions:

a. The homophily index of the group Nℓ ranges between

0 ≤ hℓ ≤ 1.

b. Agents are equally likely to establish or degrade ties

to agents that are unlike themselves.

c. The agents j′ and j to whom agent i connects and

disconnects, respectively, are selected randomly from

an uniform distribution.

Under Assumption 3†, the homophily indices repre-

senting total heterophily and total homophily are no

longer absorbing. Let G(0) be type-neutral and suppose

Assumptions 1-3† hold. Let q = 4 and the size of the

majority group be n1 = 25. Fig. 2 shows the mean of the

average homophily index for both the majority group N1

and minority group N0, varying the size of the minority

group, n0, from 5 to n1. Each data point corresponds to

thirty simulation runs. The standard deviation of average ho-

mophily index is close to zero, which suggests a remarkable

influence of group size over the behavior of the agents and

the emergence of structured communities. Here, for values of

n0/n1 ≤ 16/25 the group N1 behaves as community

according to Definition 5 (page 2), whereas for any value

n0/n1 the minority group N0 does not reach a homophily

index above 0.5 (i.e., the minority group does not behave as

community). The simulation results are useful to identify

design characteristics that the network G must satisfy to

reach a desired homophily index for the majority group.

Next, we relax Assumption 3 in order to get a network G
where the minority group N0 cannot reach total heterophily.
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Fig. 2. Mean of the average of the type ℓ homophily index and fraction
of type ℓ agents inside of the network G.

Assumption 3*: The occurrence of event ei is stochastic

but satisfies the following conditions:

a. The homophily index of the group Nℓ ranges between

0 ≤ hℓ < 1.

b. Agents of the minority (majority) group degrade or

establish ties to agents that are unlike them with

probability ε0 (ε1) and 1 − ε0 (1 − ε1, respectively),
respectively.

c. The agents j′ and j to whom agent i connects and

disconnects, respectively, are selected randomly from

an uniform distribution.

Under Assumption 3* the homophily index representing

total heterophily is no longer absorbing. Assumption 3*b

introduces parameters ε0 and ε1 (both in the range of zero

to one) which modify the likelihood of occurrence of both

rules. Again let network G(0) be type-neutral and suppose

Assumptions 1-3* hold. For the agents of the majority group

N1 let the parameter ε1 = 0.5. For an agent i ∈ N0 we vary

the parameter ε0. Fig. 3 suggests that the smaller n0/n1, the

greater should be ε0 in order that the minority group N0

shows total homophily and behaves as a community.

Finally, we add a new group to the network. Each group

represents a type of agent denoted by ℓ ∈ {0, 1, 2} and

ti : N → {0, 1, 2} is the type associated to agent i ∈ N .

We let agents from different groups act as majority or

minority agents depending on the relative size of the group

they belong to (i.e., allowing for overlapping communities

to emerge). Suppose Assumptions 1-3† hold. The transition

probabilities for the group of type ℓ are still governed by the

size group (nℓ), the total number of agents (n) and the total

number of relationships of each agent (q) in the network.

Fig. 4 shows the network generated by three groups of 50, 15

and 5 agents. In its interaction with agents of different type,

the group of intermediate size (with 15 members) behaves

as a minority group relative to the combined size of the

remaining agents (with 55 members). It is no surprise that

the smallest and largest groups present the lowest and highest

homophily index, respectively.
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Fig. 3. Percentage of times that the minority group N0 shows total
homophily (hc0

= 1).

Fig. 4. Network with three groups.
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