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Abstract— A mathematical model is introduced for the study in [4], [5] it is built on a graph, so that the graph topology
of the behavior of a spatially distributed group of heterogenous  defines the interconnections between habitats (nodes) via a
agents which possess noisy assessments of the state of theiget of gres. By not requiring that every node has an arc to
immediate surroundings. We define general sensing and motion
conditions on the agents that guarantee the emergence of a every other node, the graph topology ":,IHQWS us to rep-re.sent
type of “ideal free distribution” (IFD) across the environment, ~ rémoval of both the ideal and free restrictions to the oggin
and focus on how individual and environmental characteristics IFD model. The author of [6] introduces the concept of
affect this distribution. In particular, we show the impact of the  “interference” as the direct effect caused by the presefice o
agents’ maneuvering and sensing abilities for different classes of geyarg| competitors in the same habitat. Here, we consider a
environments, and how spatial constraints of the environment . o . .
affect the rate at which the distribution is achieved. Finally, general class of _habnat swt_ablllty_ fun_ctlons, which a#o
we app|y this model to a Cooperative vehicle control pr0b|em us to mOde| environments In Wh|Ch |nterference betWeen
and present simulation results that show the benefits of an individuals may noticeably impact group behavior. Other
IFD-based distributed decision-making strategy. related studies take into account that animals may differ in
“competitive ability,” as in [7], [8]. Unlike in [1]-[5], ad
[6] we consider an approach similar to [7], [8] in that we let

The ideal free distribution concept from ecology characevery individual have a certain “capacity,” which is assdme
terizes how animals optimally distribute themselves aeroso be a correlate of its competitive strength, its sensiritifab
a finite number of habitats. The word “ideal” refers to tth_g_, an individual may have noisy sensors), its manengeri
assumption that animals have perfect sensing capabildres ability (e.g., its speed or turn radius), or other indiviua
simultaneously determining habitat “suitability” (assetnto  characteristics that would affect the suitability of thebitat
be a correlate of Darwinian fitness) for all habitats. MooV it settles at. We allow individuals to differ in their capgi
the “ideal” part of the IFD assumption supposes that eadhave different assessments about habitats, and study how
animal will move to maximize its fitness. “Free” indicatesdifferences in the capacities among individuals affect the
that animals can move at no cost and instantaneously #ptimal distribution.
any habitat regardless of their current location. If an @im The main contributions of this paper are as follows. In
perceives one habitat as more suitable, it moves to thisdtabiSection 1l we develop a discrete agent model that captures
in order to increase its own fitness. This movement willindividual agents’ motion dynamics across the environment
however, reduce the new habitat's suitability, both tolftse We establish a wide class of agent strategies (i.e., “prox-
and other animals in that habitat. The IFD is an equilibriunymate” decision-making mechanisms) that will lead to an
distribution where no animal can increase its fitness b¥mergent behavior of the group that is a “type of IFD”
unilateral deviation from one habitat to another. (which later, for simplicity we will refer as an IFD). By

After the IFD notion was introduced in [1]-[2], different this, we mean one of many possible IFD realizations that
models have been developed based on this concept (g@ in some sense close to an IFD that is achieved under
called IFD models), each trying to explain how differenthe original assumptions [1], [2]. Here we must consider
groups behave as a whole in different environments. Ia wide class of distributions since the sensing noise and
particular, many of these models try to relax the ideal andiscretization that quantify agent capacity both gengrall
free assumptions of the IFD by taking into account individuamake it impossible to achieve perfect suitability equaicra
and environmental characteristics, which are essential i is demanded by the original IFD concept. In Section IlI
understanding the underlying dynamics of the entire grougve show how an “invariant set” of spatially distributed
For instance, in [3] the authors discuss the concept of travgiscrete individuals can represent the IFD and use Lyapunov
cost and constraints in IFD models (e.g., they consider hostability analysis of this set to illustrate that there is a
the cost of traveling between habitats might diminish thevide class of resulting agent movement trajectories across
expected benefits of moving to another habitat). Here, thebdes that still achieves a desirable distribution. Fnall
IFD model we introduce extends the one in [4], [5]. Likein Section IV we use the problem of dynamic allocation

. _of vehicles during a cooperative surveillance mission as an
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environment. Under such an assumption the total number tf j. According to the definition of H, A), if an agent is
individuals in any region or habitat of the environment camt i« and can move tg (sense the suitability af), agents

be adequately represented by a continuous variable. Suchan; can also move fromj to ¢ (sense the suitability at
approach was used in [1], [2] and [4], [5]. Here, we extend, respectively). We also assume that(if j) € A, agents

the model in [4], [5] to allow for a finite number of discreteat nodei know the total agent capacity at nogex;, and
agents. As in [4], [5] we assume that individuals (agentsy maalsox;. However, we do not assume that agents have perfect
move and distribute themselves ovAr available habitats sensor capabilities to measure its own or the suitabilitglke
(nodes) and letd = {1,...N}. Moreover, we define the of its neighboring nodes. In particular, for agents at node
suitability of nodei € H ass;(z;), wherez; represents the i, where (i,j) € A, “sensing nodej” implies that agents
state of nodei. However, we do not require the existenceat nodei know s;(z;) + w, wherew is “sensing noise”

of a large number of individuals in the environment, and wéhat can change over time randomly, butv < w < w for
assume instead, that is described with a discrete variable.known constants, @ > 0. Let s%(z;) = s;(x;) +w denote
This allows us to capture individual agent characteridtigs the perception (i.e., the noisy measured value) by agents at
taking into account, for example, different agent capesiti node i of the suitability level of nodej with total agent
Hence, here we assume thatc R, = [0,00), represents capacityz;. In some cases one might want to assume that
the total agent capacity at nodewhich results from multiple w depends onz;. For instances’(z;) = s;(x;) + w(x;)
discrete agents being present at that node. Let there beviah w = w, and |w(z})| > |w(z})| > 0 for =/ > ]
fixed number of agents in the environment. The capacitsepresents sensing conditions where a larger agent capacit
of each agent stays constant, so that total agent capacily node: results in a better suitability perception of its
C = Zi]\il x; is fixed. Lete. € Ry be the minimum agent neighboring nodg (e.g., due to better sensing capacities of
capacity required to be present at any nade H (i.e., the individual agents, agreement strategies among differe
either so that all suitability functions are well defined atlgents at the same node that improve their individual sgnsin
any state, or as an additional constraint on the environmenébilities, or averaging strategies which compensate fer th
We assume thaf’ > Ne.. Note that the value of. will  error present in individual suitability assessments). eDth
depend on the lowest agent capacity of any agent, and thensing conditions may require thf}t(a:j) = s;(z;) + wY,
minimum number of agents allowed at any node. In fact, warhere w* is the sensing noise present when agents at
assume that the total agent capacity in the environment cande i measure the suitability level of nodg in order

be partitioned into discrete blocks. Each block represantsto represent that different habitats may be measured with
particular agent, and its size is assumed to be a correlat#ferent accuracy. Here, we simply assume thaw k) is

of its capacity (competitive capability). We assume tha&t ththe sensing noise present in an agent's perception at time
largest capacity of any agent in the environment is given by, then it may be thatv(k;) # w(ks) for ky # ko, which

Z > 0, and the smallest capacity of any agent is givereby produces a general framework to represent that the sensing
so thatz > x > 0. Moreover, assume the following: capabilities of the agents may change over time (e.g., as

« Node suitability changes relate to total node agent agents discover their surroundings, their ability to asskee
capacity changes: We assume that for all;(z;), ¢ € H, suitability levels of neighboring nodes may change).

there exist constants, ¢; € R, ¢;,¢ > 0, such that ) . o
Note that an agent’s perception about the suitability level

< si(yi) — si(2) < _z 1) of a neighboring node may differ from its actual value by at

—¢; < < i

Yi — Zi mostmax{w,w}. Also, note that given a nodéec H, and
for any y;, 2 € [ee,C], i # z. Thus, s;(z;) is a ™WO neighboring nodez';jsuch tha(¢,7) € Aand({,j) € A
strictly monotonically decreasing function in its argu—W'th si(zi) > s5(xy), i si(zi) - Sj(??j) > 2 max{w,w},
mentz; € [e., C], so that as the total agent capacity inthen the measured values of the suitability levels of nades

nodei increases, the suitability of the node decrease@"dJ by agents at nodé are such thats;(z;) > sj(x;),
Moreover, we assume théitn,, .. s;(z;) = 0 for all regardless of the sensing noisepresent during the measure-
ic H. ' ments. In other words, if;(z;) — s;(z;) > 2max{w,w},
« Srictly positive suitability: We assume that the func- thgn t.h'e two sets of all possible'measured value; of the
tions s;(z;) > 0 for all i € H, and allz; € [e., C]. suitability levels of the corresponding nodéesnd j, given
si(z;) and s;j(x;), do not overlap. Conversely, note that
A. Environmental Constraints on Agent Sensing and Motion  these sets may only overlap < s;(z;) — sj(z;) <

The interconnection of nodes is described by a bidire@ max{w,@}. Moreover, if (j,i) € A, then [s](z;) —
tional graph,(H, A), whereA C H x H (i.e., a graph where si(zi)| < max{w,w}, and thereforels](z;) — s;(z;)| <
(i,j) € A implies that(j,i) € A). We assume that for 3max{w,w}. Finally, sincels}(z;)—s;(z;)| < max{w, w},
everyi € H, there must exist somg¢ € H, i # j, such we obtain thats](z;) — s}(z;)| < 4max{w,w}, regardless
that (i,j) € A and there exists a path between any twf the noisew present during the measurement. Let us define
nodes, in order to ensure that every node is connected to tHé = 4max{w,w} as the maximum difference between
graph. If (i,5) € A, this represents that an agent at nod¢he measured suitability value of a neighboring node and
i can sense itseighboring node j and can move from  the perception of the suitability level of the node where the



sensing agents are located, given that the actual sufyabili

For a general graph topology, the best we can generally

levels of both nodes andj are close enough (i.e., they dohope to do with only local information and a distributed

not differ by more thar2 max{w, w}).

decision-making strategy under perfect sensing capasili

We use the distributed discrete event system modele distribute agent capacities in such a way that the sliitabi

ing methodology from [9]. LetR., [ec,00) and
X zeRY SN o, =Cc! c RY be the sim-
plex over which thez; dynamics evolve. Letz(k) =

[ml(k)a Ig(k/’), B xN(k)]
x;(k) represents the total agent capacity at node time

index £ > 0. Constraints on our model below will en-

sure thatz(k) € X for all k£ > 0. Let I(z) = {i €
H
state 2z, such that each nodé € I(x) is occupied by a

certain number of agents which results in the total agerit

capacity at nodei exceeding the value of.. Similarly,
let U(x) =

capacitye.. The size of the sef(z) is denoted byN;. Let
M = max; {51(1‘1) — Si(l‘i +f) : for all z; € [60,0}} for
all i € H. In other words,M is the maximum change in

suitability that could occur by having an agent of maximum Let £ be a set of events and Iefp

€ X be the state vector, where

x; > e, x € X} represent the set of nodes at

H — I(x) represent the set of nodes at state
x whose total agent capacity equals the minimum age

levels between any two connected nodes remain witlin

In particular, we can guarantee thai(z;)—s;(z;)| < M for

all (i, j) € A such that, j € I(z) at the desired distribution.

Note that the value of\/ depends on the particular shape
of all the suitability functions (i.e., the suitability fation

of any node is bounded by Equation (1)), the total agent

capacity in the environmen®, and the largest capacity of

any agent. In particular, note that since Equation (1) applies

for all « € H and anyy;, z; € [e., C], if we let y; = z; and

= x; + T, we can boundM by Zmin;{¢;} < M <

Tmax;{c;}. Similarly, m = min;{s;(z;) — s;(z; + z) :

for all z; € [e.,C]} for all ¢ € H. Equation (1) guarantees

thm>0

B. Agent Sensing, Coordination, and Motion Requirements

(k) represent the

capacity leave any node. Figure 1 shows an example ofe¥ent that one or more agents move from néde H to

system with V. = 3 nodes and perfect sensing capabilitieseighboring nodeg < p(i) at time k, wherep(i) =
so thatw = w = 0. Note that a horizontal band of width (;,

{7:

j) € A}. Note that movement of agents from node

M > 0 crossing at least ong curve represents an IFD stateto neighboring nodes decreasessince nodei reduces its

for some total agent capacity in the environméht

5,(0)

IFD pattern X;

! IFD realization x”
5,(0)

5,(0)

Suitability functions for resources 1, 2 and 3

L
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F|g 1. U|tab|l|ty functionss; (z;) for three fully connected nodes with
T=z=1,w=w=0,¢e. =7, andC = 36. Under perfect sensing
conditions the IFD distribution is reached when all agemts distributed
in such a way that at state neighboring nodes such thati € I(x) have
suitability levels that do not differ by more thaii. After the IFD is reached
there is no movement of agents between nodes. For the exampia $ho
the plot, while agents distribute themselves over nodes 12ambde 3
remains with the minimum agent capacity at the desired distribution.
Node: = 3 is called atruncated node. The suitability leveks(e.) is
too low to be chosen by any agent at other nodes. Note alsothbed
may exist different distributions of the total agent capadtitat correspond
to neighboring suitability levels of nodese I(z) differing by at most
M. Each such distribution is called dRD realization. The light-colored
vertical bands represent all possible distributions ofigapacity for which
the IFD pattern is achieved. We denote the set of all IFD zaetbns by
X,y and will describe it mathematically in Section Ill. The daddared
vertical bars illustrates a particular distributie = [7,12,17]T, and its
resultant suitability levels that satisfied the IFD pattérm., note that’ =
[7,11,18]T andz’ = [7,10,19]T would also result in suitability levels
that satisfy the IFD pattern).

total agent capacity and consequently increasés;). Let
ay(i, k) denote the total agent capacity of the agents that
move from nodei € H to node! € p(i) at time k. Let

the lista(i, k) = (o (4, k), aj (3, k), . . ., oy (4, k)) such that
j<j <---<gj"andjj,....5" ep( ) anda; > 0 for

all j € p(z) represent the total agent capacity of the agents
that move to all neighboring nodes of nodehe size of the

list «(4, k) is |p(i)| and remains constant for all tinle> 0

for all i € H, since the topology of the grapf¥/, A) is
assumed to be time invariant (i.ex(i, k) € R"’( M for all

k, whereR¢ = [0, C]). Let {e;”lk) } represent the set afl
possible combinations of how agents can move from node
to its neighboring nodes for alt. Let the set of events be

described byt = P O;pz(k)) — {0} (P(-) denotes the

power set). Notice that each ever(tt) € £ is defined as
a set, with each element of(k) representing the transition
of possibly multiple agents among neighboring nodes in the
graph. Multiple elements ia(k) represent the simultaneous
movements of agents, i.e., migrations out of multiple nodes
An evente(k) may only occur if it is in the set defined by
an “enable function,y : X — P(€)—{0}. State transitions
are defined by the operatofs: X — X, wheree € £. We
now specifyg and f, for e(k) € g(z(k)), which define the
agents’ sensing and motion:
o Ifforanodei € H, s}(x;)—si(z;) < M forall (4, 5) €
A, thene?"") € e(k) such thata(i, k) = (0,...,0)
is the only enabled event. Hence, agents at the most
suitable node that they know‘of do not move.
o If for nodei € H, sj(z;) — si(z;) > M for some;

such that(i, j) € A, then the onlye” ”(lk € e(k), are

a(i,



ones witha(i, k) = (a;(i, k) : j € p(2)), such that: First, for allowed event trajectorie; C E,, assume that
each type of partial event occurs infinitely often on each

@) @i(k) = Z ae(i, k) 2 ec event trajectoryE) € F;. The assumption is met if at each
rert node all agents do not ever stop trying to move (e.g., if each
(i4) s (xi(k) -3 az(i7k)> agent persistently tries_ to move to neighb(_)ring nodes)s Thi
tep(i) corresponds to assuming “total asynchronism” [10].
< m]ax{s; (zj(k)):j €pl)}y —W Second, for allowed event trajectoriés; C E,, assume

that there exist®3 > 0, such that for every event trajectory
E € Eg, in every substringz(k'),...,e(k' + (B — 1)) of

E there is the occurrence of every type of partial event (i.e.,
for everyi € H, the partial event’?(") ¢ ¢(k), for somek,

: ) k' <k < k'+ B —1). This corresponds to assuming “partial
si(@i(k)) > (2 (k) and z;(k) = e asynchronism” [10].

Condition (i) guarantees that at any node there is at
leaste. agent capacity. It is required so that conditions [1l. EMERGENTAGENT DISTRIBUTION
(74) and (ii7) are well defined at all times. To interpret
conditions(ii) — (iv) it is useful to note that reducing
(increasing) the total agent capacity at a node always
increases (decreases, respectively) the suitabilityat th
node. The three conditions constrain how agents can
move based on their capacities and in terms of node
suitabilities. Note that agents may also move from

higher suitability nodes to lower suitability nodes as, is an invariant set that represents all possible distidimsti

long as all conditions are satisfied. Without condition
(7i), there could be a sustained migration oscillatio fthe total agent capacity” at the IFD since for € Xq,
qu :cZ —sj(z;)] < M+ W for all i,j € I(x) such that

between nodes. Conditidii) implies that at least one Q € A ands;(z:) = sie.) for all i € U(x). It can

agent musF move tq th?. nelghbormg nod.e. pgr_cewe shown that according to the definition of the enable
with the highest suitability. Without conditiorii) function g there is no agent movement between nodes, so
some high suitability node could be ignored by thethat alik) = (0 0) for all i ¢ H when (k) ¢
agents and the IFD distribution might not be achievable Xd Moreover, no’t'e that there exist many different agent
Cond't'on.(“) toge.ther. .W'th conQ|t|or(zzz) guarant(_aes distributions that belong t&’;. Any agent distribution such
that the h|ghest su!tab|I|ty. node is S trictly mon_o_tomyall that the distribution of the total agent capacities X, is an
Sggza:ngn;vi\rmm;e Stllzlllnglelzy,fr\ggh?;tni:gcglt;gmé)o deIFD realization. Note that according to the definitionXf it
9 Is possible for unconnected nodes (i.e., ones suchthgt ¢
with lower suitability levels, and the desired distributio A) in the setl(x) to have suitabilities that differ by more
Y;/O:(Id)mt ;)(e rz:)i)l’ntaméa) e(k), thenz(k + 1) = than M when the distribution is achieved. This could happen
a(i.k) if two nodesi, j such thati,j € I(x) with high suitability
levels whenx € X; are separated by a node with minimum

(#4) If a;(i,k) >0 for somej € p(i), then

o= (i, k) > = for some

5" € {5+ sj(xj (k) > sp(e(k)) forall £ € p(i)}
(iv) o;(i, k) =0 forany j € p(i) such that

The set

= {zeXx: forallie H, dther |s;(z;) — s;(x;)|
< M+ W for all j € p(i) such thatz; # e,
ands;(z;) > s;j(xz;) for all j € p(i) such that
Tj =¢€c, OF Ty =€} (2)

Jewky(x(k)), wherex; (k + 1) equalsz;(k) plus

3 ai(j, k) — 3 a;(i,k)  agent capacity (e.g., in an environment represented byea lin
{iriep() el ) eei)} (ien(i).e P 0 eeti)) topology of the grapi{H, A)). However, any two nodes that
are linked according to the graghi, A) (i.e., ones such that
Note that ifz(0) € &, x(k) € X, k > 0. (i,7) € A) and belong to the sef(x) must have suitability

Let Y denote the set of all infinite sequences of eventevels that differ at most by/ 4+ at the desired distribution.
in £ Let E, C &Y be the set of valid event trajectoriesHence, depending on the graph’s connectivity, there coeld b

for the model (i.e., ones that are physically possible).nEve isolated “patches” of nodes where only nodes belonging to

e(k) € g(z(k)) is composed of a set of what we will call the same patch have suitability levels that differ by at most
“partial events.” Define artial event of type i to represent M + W (i.e., forming an environment of different patches).

the movement ofx(i, k) agents from node € H to its Moreover, note that the formation of patches depends on the

neighborsp(i) so that conditiongi) — (iv) are satisfied at total agent capacity in the environment, the initial diztion
time k. A partial event of type will be denoted by:*?(Y) and  z(0), and random agent migration between nodes.

the occurrence of?(*) indicates thasome agents located at Theorem 1 (Stability for a fully connected environment,
node: € H move to other nodes. Partial events must occlainy total agent capacity): Given a fully connected graph
according to the “allowed” event trajectories. The allowed H, A), . > 0, any population size with total agent capacity
event trajectories define the degree of asynchronicity ef thC, and agent motion conditiong) — (iv), the invariant set
model at the node level. We define two possibilities for thet; is asymptotically stable in the large with respectHp
allowed event trajectories: and exponentially stable in the large with respectig.



Due to space constraints we do not include any proofsy the topology of the grapH, A). We assume that new
here. For detailed information about the proofs of any of theargets continually pop-up at points in the surveillanagae
theorems the reader should contact the authors. according to some stochastic process. WeRlgtharacterize

Note that asymptotic/exponential stabiliip the large the (average) rate of appearance of pop-up targets in area
implies that for any initial distribution of agent capagitiie 4, and assume it is constant but unknown to the vehicles.
invariant set will be achieved. This result provides geheraVe assume that pop-up target locations in arese known
sufficient conditions on when a distribution satisfying theonly to vehicles currently in and that they stay exposed
IFD pattern is achieved. However, the size &f is not until they are visited by some vehicle. When a vehicle
necessarily one, since there are many possible IFD reatarts approaching a target, the target is considered to be
izations that may be achieved. Theorem 1 guarantees thattended,” and a vehicle may visit a new target only after
under the above stated sensing and motion conditions ot target being approached has been reached. Once the targe
of them will be reached. Moreover, our analysis consideris reached, the vehicle may perform various tasks and it is
all environments which can be modeled by a wide class dhen ignored for the rest of the mission.

suitability functions. It includes functions which haveene The suitability level of an area is defined as the (average)
found to be useful in biology, like the one originally used torate of appearance of unattended targets (i.e., targets which
introduce the IFD concept in [1], and the one in [8] whichhave appeared but are not being or have not been attended
introduced the interference model, among others. by any vehicle). Figure 2 shows two classes of suitability
Note also that Theorem 1 requires > 0 because if functions for different intra-area vehicle coordinatidrage-
e. = 0 at a truncated node, then s;(z;) equals infinity gies and target pop-up raté. The left plot assumes that
for certain suitability functions (e.g.si(z;) = ££). The vehicles located in thesame area coordinate in order to
proof of Theorem 1 considers the dynamic emergence @kcide which targets within that area to attend (i.e., adter
different patches when the environment is modeled by @rget is reached, a vehicle approaches the closest thaget t
fully connected topology. Patches emerge as agents dirib js not being approached by any other vehicle). The right plot
themselves over the nodes, and the total agent capacityaissumes that vehicles located over the same region do not
small enough. coordinate and they randomly approach any target located
Theorem 2 (Stability for a not fully connected envi- within the area they are monitoring. Here, since our focus
ronment, but sufficient total agent capacity): Given any s on the relative proportioning of area monitoring and not
(H,A), e. > 0, and agent motion condition§) — (iv), intra-area coordination, we use the no intra-area cootidima
there exists a constait > Ne. such that if the total agent approach in the remainder of the paper (conceptually simila
capacity in the environment is at least then the invariant results to those below are obtained for specific intra-area
set X, is asymptotically stable in the large with respect taoordination).
E; and exponentially stable in the large with respecEte.
Theorem 2 considers a general interconnection topology,
which allows us to consider less restrictive agent sensing
and motion abilities. For this case we show that for a large
enough total agent capacity there are no isolated patches
in the environment at the desired distribution. Theorem 2 is
an extension of the load balancing [10] theorems in [9], [11]
to the case when the “discrete virtual load” is a nonlinear
function of the state.
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IV. APPLICATION: COOPERATIVEVEHICLE CONTROL
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Suppose we wish to design a multi-vehicle guidance
strategy to enable a group of vehicles to perform survaiftan Fig. 2.  Suitability functionss;(x;) for an area with¢ = 2.5km and

of some redgion where the goal is to make the proportio¥ehicles at speed = 15m/s,T" = 100m with (left) and without (right)
9 9 prop rr'\etra-area coordination strategies to decide which targéthin the area to

of V§h|c!es visiting a set Qf predeflned areas matCh .thﬁ)proach. Each data point represents 60 simulation runsvaiifing target
relative importance of monitoring each area. This vehiclgop-up locations. The error bars are sample standard dewafiom the

distribution goal must be achieved in spite of vehicle sggsi Mean-

communication, and motion constraints (the combination of

which requires a decentralized vehicle guidance stratetfy w  Assume that the vehicles only have noisy perceptions
each vehicle making independent decisions). Assume that tabout the suitability levels of the area they are monitoring
it" vehicle obeys a Dubin’s model with (constant) velocityand its neighboring areas. To define the perception by any
v and minimum turn radiusl” (i.e., vehicles will either vehicle about the suitability level of an area, we use a syste
travel on the minimum turning radius or on straight lines)identification approach to determine a parameterized model
Assume also that the region under surveillance can be dividef the expected suitability function of that areas;(z;). In

into N equal-size squaré x ¢ areas. These areas are theparticular, under the above assumptions and according to
nodes: € H. The connectedness of the areas is modeldgigure 2, for a fixedT' the expected suitability functions



are of the form neighboring areas, and any vehicle evaluating conditions
) A (i) — (iv) uses the average value of all sensing vehicles in
Silwi) = Ri —7(v, O); () order to define its current perception about an area. Note tha

for all i € H, whereR; is the expected target pop-up rate forsuch an approach generally requires a fast and synchronized

areai (targets/s), an@(v7£) is the expected rate of targetscommunication network. Hence, we define an asynchronous

being attended by each vehicle moving at speeth an agreement algorithm, where those vehicles able to measure

area of size/ x ¢ (targets/s/vehicle). A vehicle’s perceptionthe suitability of area:i try to reach a common value

about the suitability level of an area will depend on howby exchanging their perceptions and combining them by

the different parameters in Equation (3) are affected by if®rming convex combinations. Figure 4 shows an example of

limited sensing and maneuvering capabilities. the typical different IFD realizations for these two stoiés

While maneuvering constraints on the vehicles (i.e., aAnd the no-cooperative sensing case (i.e., where vehiges |

increasing minimum turn radius) may diminish the expectetise their own perception to evaluate conditigns— (iv)).

rater (v, £) for all vehicles in an area, the expected suitabilityNote that the ultimate distribution has less variation when

function shape stays the same as in Equation (3). Furth@ooperative sensing is used. We have also run Monte Carlo

more, note that in many applications, knowing the value dggimulations that show that when the ultimate distributias h

R; in Equation (3) usually requires that vehicles estimaté&ss variation vehicles require more time to achieve it.

the number of targets that have appeared in that area in a

time window divided by the length of that window. Here we 1| = aeaz

assume that vehicles have good sensing capabilities aral use — Meaa

large enough window in estimating the rate of appearance of

targets (e.g., so that vehicles monitoring arean ultimately

obtain R; and R; for all j € p(i) within 10% of R; and R;,

o

o
o
&

Suitabilities (targets/s)

0.06 1 I. 4 I_Ll
. L \‘l‘

respectively). P ] 1

We define the perception by a vehicle located over area :ﬂ
i about the suitability level of a neighboring argaas J 1
si(zj) = 5;(z;) and this will be used in the movement rules . . .
| . . . . . . 200 400 600 800 200 400 600 800 200 400 600 800
defined in Section II-B. As the mission progresses, vehicles Time (s) Time (5) Time (5)

decide to move from one area to another only if the proposed _ , _

conditions(i) — (iv) are satisfied. Figure 3 shows two typicalf'9: - Effects of implementing a synchronous and partialnaironous
. R . . . L iterative methods to try to reduce the effects of the sensimigenv on

dlffel’ent ”:D I’ea|lzatIOI']S fOQO VEhIC|eS na reglon dIVIded the mission performance with 20 Vehic|es; no Cooperat“/e”sgr(%ﬂ)’

into four areas, and where a line topology is used. While thagreement strategy (middle), averaging strategy (right).

plots illustrate that good vehicle surveillance distribos

are achieved, different IFD realizations can emerge due to

the discrete nature of vehicle capabilities (compare Ileft a
right plots) [1] S. D. Fretwell and H. L. Lucas, “On territorial behaviond other
) factors influencing distribution in birdsActa Biotheoretica, vol. 19,
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