Proceedings of the 42nd IEEE
Conference on Decision and Control
Maui, Hawaii USA, December 2003

TuA01-6

Cooperative Control via Task Load Balancing for
Networked Uninhabited Autonomous Vehicles

Jorge Finke
Dept. Electrical Engineering
The Ohio State University
Columbus, OH 43210

finkej@ee.eng.ohio-state.edu

Abstract—1In this paper we first define a mathematical model of the
“plant” for the cooperative control problem for multiple uninhabited
autonomous vehicles (UAVs). This includes a representation for the
vehicles, environment, and communication network. Next, we define an
approach to cooperative control that uses local UAV task planning and
multi-UAV coordination via task load balancing over the communication
network. Our approach is motivated by our desire to cope with
significant imperfections in the communication network and uncertainty
in the environment, and yet provide a scalable strategy which can be
implemented in real time across a network of UAVs, each of which
only has relatively low processing power. Our focus in this paper
is on defining the cooperative controller problem in a mathematical
framework that is familiar to a control engineer, studying properties of
a load balancing strategy for cooperation, and then via simulations to
identify key challenges when network influences dominate the problem.

I. INTRODUCTION

Given multiple uninhabited autonomous vehicles connected via
a communication network there is a need to develop decentralized
decision-making methods so that the group can cooperatively decide
“who should do what and when they should do it.” For instance,
without human intervention they must coordinate the best way to
search for targets by optimally exploiting a priori target location
information, and as targets are found, dynamically agree on which
UAVs to send to perform the subsequent tasks of classification,
engagement, and verification [1}-[4]. This must be done with as little
communication between the vehicles as possible and considering all
major network effects such as topology variations and delays.

In [5]-[7] receding horizon approaches are considered for cooper-
ative control. For some cooperative control problems such methods
can be very useful. The approach, however, differs from ours in
part because our focus is on the case where network constraints
and uncertainty dominate the problem to the extend that optimal
cooperative planning of multiple UAV activities far into the future
in real time is not feasible or even useful.

Other methods that are being used in cooperative control include
what one might call the “map-based approaches” like in [8]-[12] that
provide some advantages since they can be used for probabilistic
frameworks and convenient incorporation of a priori knowledge.
Our work assumes that there is some prior knowledge about the
terrain, but not in a detailed form like the “ROR map” [9] or other
such maps (e.g., “threat maps” [12]). We simply assume that we
have certain regions we are interested in searching called “search-
points.”

When considering uncertain environments there are different
types of uncertainties one can study. We could for example account

*This work was supported by the AFRL/VA and AFOSR
Collaborative Center of Control Science (Grant F33615-01-2-
3154). More information about CCCS activities can be found at
http://eewww.eng.ohio-state.edu/ "passino. Also, the
authors would like to acknowledge the inputs of P. Chandler, J. Layne, S.
Rasmussen, and C. Schumacher of AFRL.

0-7803-7924-1/03/$17.00 ©2003 |IEEE 31

Kevin M. Passino*
Dept. Electrical Engineering
The Ohio State University
Columbus, OH 43210

k.passino@osu.edu

Andrew Sparks
AFRL/VACA
Wright Patterson AFB, OH 45433
Andrew.Sparks@wpafb.af.mil

for uncertainties in the environment by considering () the loss of
part of the UAV fleet as suggested in [13] (e.g., UAVs might crash
or be destroyed), (it) communication network imperfections, (i)
the uncertainty about which search-points the UAVs need to visit,
(vi) uncertainty arising from the presence of “false targets” [14],
and (v) the uncertainty about what tasks to perform once these
search-points are reached (e.g., we may not need to attack after
a classification). This task uncertainty determines how accurately
we can predict ahead in an uncertain environment. Our approach
focuses on the type of uncertainty encountered when search-points
are reached and new tasks like classification or engagement need to
be scheduled on-line since there is high uncertainty a priori about
whether any given task beyond search needs to be performed. We
consider the effects of the communication channel via unknown but
bounded delays involved in communicating the status of the targets
from one UAV to another. At this time, we are not considering
communication topology influences beyond what could be modeled
by such delays. The delays we consider should not be thought of as
rising only from delays on network links, but also from processing
delays (e.g., from image processing or coordinated operation with
a human), occlusions and sensing/communication range constrains,
or temporary loss of a communication link. The delays we use can
model each of these.

In summary, our focus is on trying to exploit distributed load
balancing algorithms [15], [16] to achieve inter-vehicle cooperation.
We take a conventional control-theoretic modeling and analysis
approach and use Monte Carlo simulations to give insight into
design trade-offs.

11. PLANT MODEL

We include the vehicles, targets/threats (“objects”), sensors, actu-
ators, and communication network in the plant model. The resulting
model is “hybrid” and stochastic since the vehicle dynamics result
from a continuous time system, and yet other aspects are best
represented by nondeterministic automata-type representations (e.g.,
tasks, task orderings/status, and sensor modes).

A. Vehicle and Object Models

Suppose that there are N,, UAVs and that the i*" one obeys a
continuous time kinematic model given by

& = weos(6}))
i, = v sin(@f,)
6 = wul

where i, is its horizontal position, x%, is its vertical position, v
is its (constant) velocity, 03, is its orientation, w is its maximum
angular velocity, and —~1 < u} < 1 is the steering input. Hence,
uf, = +1 stands for the sharpest possible turn to the right, and
analogously u® = —1 represents the maximum possible left tumn.

The minimum turn radius for the vehicles can then be defined as
R = %. Rather than use this continuous time representation we
assume that vehicles will either travel on the minimum turn radius
or on straight lines. It is then possible to analytically write down the
formulas for the vehicle trajectories (e.g., in terms of arc segments
on circles and line segments). Next, we quantize these trajectories
with a sampling interval T to obtain discrete time sequences that
we denote by z} (k), zi2(k), 03 (k), and ul, (k) for k = 0,1,2,. ...
Then, for a given initial z%;(k), z5,(k), and 6% (k) and a desired
location and heading, the code will generate trajectories between
these two points, Wthh are minimum time/dlstance trajectories
For convenience, let 2%, = [ri,l,xvg]T, [(.T“D)T o]
Ty = [(x% T ,(zf,\"‘)T]T, and u, = [uu, .. N']

The environment is modeled as a two-dlmensmnal plane. 1t is
assumed that at most N objects are in this square region, but initially
we do not know where they are at. In the environment we assume
that there can be a variety of targets, threats, entities that are both
targets and threats, and other entities that may be neither targets nor
threats. For convenience we will refer to all these as “objects” of
different types. Whether an object is a target or a threat depends on
mission objectives and this can be specified in the controller (e.g.,
along with a “priority” for a target) or perhaps by a human operator.
The 5" object has characteristics specified by its state which is

zl = [x{,x’é,@j J d"]T)
where rl, z3, and 47 are the horizontal position, vertical posmon
and orientation of the j* object in (z1,z2) coordinates. It is
assumed that the objects are at distinct points (i.e., there are no
two objects that are exactly at the same location, but with the same
or-different orientations since then we can number the objects and
thereby umquely identify them). The object type is represented by
o’, with o’ a number representing the type of object for the j"

object. Finally, &/ € [0,1] represents the amount of damage to an
object due to an attack, with d = 1 representing that an object is
completely destroyed. For convemence let 2, [x{, .732, 67] and

2= (@) (=)]

B. Sensing, Tasks, and Actions

UAV sensors to be defined next return the position, orientation,
and other aspects of the objects but do not know the indexing j =
1,2,..., N of the last subsection. Hence, UAV i will number the
objects that it finds, in the order it finds them, by j; = 1,2,..., N.
If more than one object is found by a sensor at the same time then
the UAV just orders them randomly.

Each UAV has a sensor that can be commanded to operate in
different modes. Let

N RO OMN

define the Sensor state of UAV i, where pi = [it .,p;N]T and
similar for pi, p%, and pi. The values of p¥i,pt pifi pii €

[0, 1] are the levels of search, classification, attack, and verification
certainty (probability), respectively, by the i** UAV for the ji"
object. There is a type of classification that is done for search so
that upon searching an area we will gain information about both

p7i and pi¥7. The value of p' is further modified by a UAV that

"Here, we used the development by AFRL/VA COECS and the code from
the public release of their multi-UAV simulation to generate the optimal path
trajectories in MATLAB.

32

‘G = (V,A), where V

revisits an object for classification. The value of p¥¢ and p¥ a

set during attack and verification of an object, respectively. Hence,
pP = p¥t = p¥t = p¥' = 0 would correspond to the sensor
on UAV i saying that the probability that object j; was found is
zero, and the classification, attack and verification was unsuccessful,
respectively. If p¥i = plfi = plifi = pift 1 it means that
for UAV ¢ object j; was definitely found, object classification is
certain, attack is certain, and that verification is certain. Finally,
note that initially we use “—" as a symbol for “not known” and any
element of ps,pc,pa, or p, could hold such a value. For instance,

at k = 0, p¥i = pi¥i = p¥¥i = pi¥i =“—» since nothing has "
been semed. Let x5 = [(:cé)-r, (x)] . We also model the
sensor footprint and how tasks are completed for each task type,
which includes consideration of uncertainty.

L

C. Communication Network

Here, we assume that communication links and the overall
topology are fixed and that the only imperfection on a link is a
possible delay in transmitting information (but as mentioned earlier
we view this delay as also modeling other sources of communication
imperfections). Note that we consider the communication network
to be part of the plant since we view communication as sensing
(receiving data) and taking actions (transmitting data) and earlier
we considered similar characteristics to be part of the plant. The
communication network topology is defined via a directed graph
{1,2,...,N,} is the set of nodes
(the vehicles) and A = {(4,') : 4,4’ € V} is a set of directed
arcs representing the communication links. If (4,i') € A this
represents that vehicle i can send vehicle i’ information (which
sometimes may be thought of as vehicle i’ being able to sense
information from vehicle 7). For all (i,i') € A, we assume that
i # i’ since we assume that any local information on a UAV is
known to the UAV and hence does not need to be transmitted. Let
Af = {i': (4,i') € A} and AT = {i": (¢,4) € A} be the set of
UAVs that UAV ¢ can send messages to (receive messages from,
respectively).

Next, we must represent how information is passed from one
node to another. For representation simplicity we will simply view
each communication link (z,4') as a memory that holds the last D¥
values of the vectors of information transmitted between UAVs ¢
and i'. Denote the vector of information that UAV ¢ transmits UAV
i attime k as zi (k), (4,4') € A. A delay of up to D%’ units on
a link can be represented by having each link have a state vector

1)

zi (k=
zi (k) = :
a¥ (k- D)

Let 2% (k) be a vector of z%(k) for all (¢,i) € A so that it
represents all information received by UAV { via communication

[(zL) (N")T]T. The specific form of

z '(k) (depends on the design of the cooperative controller. It can
hold z}, (k),zs (k), & '"(A),u (k), and ul (k) for i’ % i and for
the m*® object, where '™ and u* will be defined in the next
section. For convenience in the notation we indicate retransmission
of an entire vector when only some or no information in that vector
changes.

To model a deterministic fixed delay ‘r“’ 1< i < D¥
between UAV i and UAV we w1ll only allow the receiving node
i’ to pull the delayed value z& (k — 7%) off the link at time k.

links. Let z,

An unknown but bounded delay could be represented via a random

choice of which element to pick from the past vectors that are

currently stored (i.e., random choice of 7%, 1 < 7% < D'); this

then represents that the messages that are sent can be delayed and
out of order upon arrival.

D. Observation and State Equations

Next, we define the sensor modes, attack mode, and the informa-
tion that is gathered from sensing and communications. To do this
we first define the observation map for UAV ¢

y (k) =R (zi(k), z(k), zi(k), zL(k), u' (), wo(k))

where y*(k) is the sensed information at time k for UAV i, y =

HE
[(yl)T,..., (yN")T] ,and u = [ul,...,u""""]-r .

Here, ' € {s,c,a,v,n} indicates that UAV ¢ should search,
classify, attack, verify, or do nothing. The UAV controllers will
choose these u* values, and then move to the appropriate location
to perform the task. The case where u’(k) = n typically only arises
at the end of a mission when there are no remaining tasks so a UAV
may choose to do nothing and move back to its home (which we
consider to be at (0, 0)). Let

v = [(@m) T (E0) T (@ 0) T @)]

so that each UAV knows its own position and orientation z? (k)
(e.g., it may obtain this via onboard sensors and GPS), and sensed
information about objects via its own sensors z% (k). Also, we use
291 (k) to represent what UAV 7 measures at time k about object j;

@)

3

T
and ¢ = [(a‘:“)T seees (éiN)T] . If there is uncertainty in the
sensing, the w, (k) can be used to represent sensor inaccuracies in
search (e.g., measurement errors in object position and orientation
and errors in classification during detection), classification (errors
in measuring object type), and verification (errors in measuring
damage level). Notice also that % (k), the vector of information
received from any UAV i such that (i',4) € A at time k is the
measured value of z%(k), and is part of the measured output for
UAV . It is via the output map h' and wo(k) that we represent
network characteristics (.i,i_scussed‘lgbove. For example, random but
bounded delays 1 < 7¢* < D'* on link (4,i) € A would be
held in w,(k) and &} (k) is a vector of z&(k —7%'%), i.e., received
values from all UAVs i’ connected on the network to UAV i, but
delayed by 7V,

Next, we define how the plant state evolves. The state has four
parts, z.,(k), z(k), zs(k), and 2z (k). We have already explained
how to generate z,(k + 1). Next, we will, in turn, explain how to
generate z(k + 1), zs(k + 1), and z(k + 1). Suppose that

:L‘(k+ 1) = f(xu(k)i IL’(’C), xs(k)v xL(k)’ u(k’)a Uy (k); u’s(k)) 4

where ws (k) is a vector that will have components that will be used
to represent uncertainty in sensing and attacks (no uncertainty is
used for the communication links in the state update; uncertainty in
communications is represented in the observation equation above).
To define z(k + 1) first note that if we assume that the objects
are stationary the positions and orientations of all objects stay the
same (of course “pop-up” or moving objects could be modeled). We
also assume that the objects types do not change (but they could
if you consider, e.g., current vehicle configuration to be part of the
object type). All that remains are the damage levels of the objects
d?(k +1) and f must represent this. Here, when any UAV i is in

33

the correct position and orientation (defined earlier) it may attack
object j at time k£ and

Nau
Pk+1)=d(k)+ Y d7(k)

i=1

where d* (k) is the amount of damage inflicted at time k on object
Jj by UAV i (the d/(k) must be defined so that ¢’ (k) € [0, 1] for
all k). The d*/ may be a fixed percentage of d’(k) or may contain
a random component that we can represent via a component of
ws(k). Alternatively it may be that d’ (k) = 1 after a fixed number
of attacks. Notice that we model the possibility of simultaneous
attacks.

Next, consider how to define zi(k + 1), the update of
pi(k), pL(k), pi(k) and pl (k). There are several ways to represent
how these values evolve dynamically depending on the level of
uncertainty that is present in the problem that is being considered.
Here we consider the case where there is a small enough amount
of uncertainty with respect to task completion, so that we do not
have to repeat tasks but high enough uncertainty so that upon
completion of a task a UAV only knows whether another task
needs to be completed for the object, and what task is needed.
Hence, upon sensing object j; UAV 7 will have pij‘ =1 or
PP =0 representing its confidence in whether or not it found
object j;. Regardless, we consider the task of searching the region
in which object j; was found to be completed. We consider search
to have given a classification during the search process pg' = 0
for object type o’¢ indicating detection of ‘object type, but that a
classification must be done since it is completely uncertain about
object type. Upon classification we assume that either pij" =0 or
pei = 1 depending on the object type so the classification always
succeeds. Classification is assumed to perfectly distinguish between
the true and false targets and appropriately indicate whether to attack
(p¥* = 0 for a false target and it is not attacked, and p¥* = 1 for
a true target and it is attacked). Upon aftack we have with equal
probability p¥* = 1 representing a very successful attack so there
is no need for a verification, or pi/i = 0 representing that there is
uncertainty if the attack was good, so there is a need for verification.
A verification is performed with the result that p¥* = 1-and &’ (k) is
sensed and stored for post-mission analysis. Hence, once an object
is found by search and classified as a true target it is attacked. If
there is uncertainty in how good the attack was, the target is then
verified but then ignored for the remainder of the mission. The
initial object type distribution and the effectiveness of the attacks
will determine how many tasks must be completed to finish the
mission.

Note that there needs to be next state functions for 2% (k + 1) for
each UAV appropriately defined depending on sensor uncertainty
characteristics. Then, for example, two UAVs may sense the same
object and they may have different levels of uncertainty about each
object.

Next we must define how z 1, (k+1) is generated. Here, we simply
assume that given z§ (k),

o (k+1) = [(sz'(k))T B CLE AR T] T

so that we simply shift the values at each time step. This represents
that at time k we can get new transmitted information, and hence
each UAV can get an updated received value from each UAV it
communicates with.

111. TASK LOAD BALANCING FOR COOPERATIVE CONTROL

According to the model, as the mission progresses UAVs sense
and react to the environment and thereby obtain new tasks and
complete others. Here we assume that the UAVs cooperate by
sharing the work to complete the tasks, by passing tasks over
the network and other relevant information. Each UAV schedules
its own tasks and the schedule and any unscheduled tasks are
considered to be the task “load” of the UAV. Via the network
links UAVs may exchange tasks to “balance” the load to try to
make sure that all UAVs have tasks to perform (i.e., so there is
no “underutilization” of any UAV) and so that the UAVs finish
their mission at nearly thé same time (which forces cooperation
since there is pressure for no UAV to go home until every other
UAV has only one more task to complete). Why use this type of
cooperative controller? Our design decisions were driven by the
need to (7) cope with uncertainty arising from both an imperfect
communication network and the uncertain results of task completion

. (here we use the “uncertainty reduction” characterization in Section
2), (i) keep the computational complexity of local UAV scheduling
algorithms low so that they do not demand too much processing
power on a UAV, and (ii7) obtain a flexible and scalable approach
applicable to small or large groups of UAVs.

The local controller for the i*" UAV can be modeled as a
dynamical system

ze(k +1) fe (2ik), uc(k))
vek) = - he(zi(k)) 5)
Recall that we assumed the existence of a global clock via GPS;

hence all UAVs use the same time indices. Next, we define each
variable of this model.

il

A. Local UAV Controller State and Command Input

First, let u? = o' from Equation (3) so all measured local
information is available for making decisions. Let t3,(k) = (¢, ji)
represent- that task type £ is scheduled to be performed on search-
point or object j; at step m by UAV i, We define the state of the
local controller)
T (k)
Ty (k)
5 (k)

zh(k) =

which is composed of the schedule for UAV ¢ which is an ordered
list TP = (#,...,t4,) at time k (e.g., ti(k) is the task on the
schedule at time that is currently being performed using z% from
ug), Ti(k) that is the ser of unscheduled tasks, and =% (k) (with
components ¢) that is the accumulated information on the objects
sensed by UAV 1 or ones that other UAVs communicated to UAV
i. Next, we define the initial state z%(0). The list TZ(0) is the
initial schedule and for convenience here we assume that the only
task type that is scheduled initially is a search task. It is assumed
that the search tasks are initially set via N,-TSP to define all the
components of T2(0) and T(0), given a priori specified search-
points. Clearly-this could be generalized to allow specification of
other task types if more a priori information is known (e.g., an
object location is known but a classification needs to be done). It is
assumed that the set of search-points is given by S, where |S| = M
and an element in S holds search-point position and orientation for
search (e.g., by gridding the area via sensor footprints we can define
S). This set S is fixed so it is not part of the state. It is simply used
in th, = (1,Ji), the search task, to specify where it needs to do
a search task. It is assumed that all N, UAVs hold the same S.

The initial state z3(0) also defines z5(0) = [—,...,—]7 so that
no information on object location has been sensed. We assume that
all UAVs know the location of their “home base.”

For the tasks of classification, attack, and verification (¢
2,3, 4), to specify the meaning of ti, = (¢, j;) we need information
that is sensed during the mission about object j; (i.e., we need
#Yi (k) information from y;). The information £%(k) comes in
asynchronously as information is sensed about the environment.
This needs to be stored in the controller to keep track of all
information that UAV i has gathered about each object j;. Let x5

. denote this accumulated information at time & that is stored in the

34

controller for all j;. Moreover, other UAVs may send tasks and
the associated object information to UAV ¢ and this will also be
accumulated in z. More discussion on this point follows below.

Next, we change Té(k) = (ti(k),...,th, (k) if ti(k) was
completed at time k. In particular, we let

. { '(t;(k),...,th(k)’@) if t{ (k) is completed

Ts (k) otherwise

where @ is the null task and we assume that the task ordering is
appropriately renumbered. When is t&(k) = (£, ;) completed? It
is completed at time k if for £ = 1, pdi(k) € {0,1}; for £
2, pdi(k) € {0,1}; for € = 3, pdi(k) € {0,1}; or for ¢
4, pi (k) € {0,1}. The pi¥*, pi, p*, and p¥* information comes
from (k) in the ul = 4 vector.

Next, let 24 ,.(k) = 2% (k) hold the set of all received information
at time k,

(6)

S0 o (k=" w)

2y (k) = :
z‘”'i (k‘— T:‘”i(k))

ol (k) z
where AT = {i',...,i"}and 1 < 7' (k+1) < r''i(k)+1 < D't
so that messages are not received out of order. Notice that the delays
77i(k) can be different for different communication links and that
information can arrive from different UAVs at the same time. Let
x4 (k) be the set of all the information sent by UAV i at time k

defined by,

aii (k)
iy (k) :
gk =1 1 | =|aW®
oy (k)
ai’ (k)
where Af = {i’,...,i"} and we assume that at any time k a UAV

may pass at most one task to only one of its neighboring UAVs,
and it will be put in ¥ (k). Suppose that we denote such a task
by t%" (k) = (£, ji:) which is the task passed from UAV i to UAV
¢* such that (i,7*) € A.

Next, given the information from y*(k), in particular z%(k), we
can define the new tasks that arrive at the network of UAVs via
UAV i at time k, which we denote T%, (k). Here, let the “new”
set of unscheduled tasks be ones that arrive via sensing and actions
(information from z%(k)), or the network via z%,(k), combined
with unscheduled tasks from the last step T (k). Hence, we think
of new tasks that arrive over the network in the same way as we do
of new tasks arising from a UAV using its own sensors and taking
actions. In this way the UAVs are cooperatively sharing sensed

information. UAV i will also pass the location information about
object s, its current schedule T¢.(k), and its set of new unscheduled
tasks T,iu(lc). Hence the messages sent over the network all have
the form

. £ (k)
W =] e
| T U Tk
Also, for i’ #1i*, i’ € A3
" [0
W= -
| Te(kR) U Trulk)

so that at each time instant each UAV transmits to its neighbors its
current task load since this is used in load balancing.
Here,

ve(k) = hi(zi(k))
In particular, the output
VE(k) = [ud (), u (k) oo (K)]
so it holds the commands on how to move the vehicle, what task
it should perform at each step, and the information that should be

transmitted to its neighboring UAVs at time k. Here, if we have
ti (k) then uy (k) and u'(k) are specified.

B. Task Scheduling, Balancing, and Passi(xg

- To complete the definition of z%(k+ 1) we need to define £ (k),
Ti(k + 1), and Ti(k + 1). Let | - | denote the length of a list, the
size of a set, or for scalars, the absolute value.

We will first assume that each UAV will have only one locally
scheduled task, that is |74 (k)] = 1 for all k and for all ¢ if there
is a task available. Below we will also consider the case where
[Tik)| > 1. If Ti,(k) # O, there is at least one task in the
unscheduled set of UAV 4 that may stay unscheduled in 7% (k 4 1),
or be sent to any of its neighboring UAVs. If |T%, (k)| > 1 we will
choose element t,,, € T%, to be this one task. UAV i* represents
the UAV with the smallest task load and is given by

i* = arg min {Q (T;;(k - Tili) UT:,Iu(k - Ti,i))}

fori =1,..., N, (we use union to form a set from the elements
in a list and a set) where) is a measure of the length of the
tas’k schqgulc of UAV ¢’ (e.g., it could be the number of tasks"on
T |UTr. or the path length to execute the tasks on Ta {J Tru)-
Then, if ¢ # ¢*

k) = thu(k)

N Ti (k) if Ti (k) # 0
Tik+1) = { Frep (Thu(k) — {tiu(k)}) otherwise
Ti(k+1) = Tau(k)— {tha(k)}

otherwise, if ¢ = i*

tii’(k) — @

. _f Ti(k) if Toc(k) # 0
Ts(k+1) = {Fm, (Tiu(k)) otherwise
Titk+1) = Ti,(k)

where the element in T:(k + 1) is determined by having the TSP
algorithm, which we denote by Fisp, return the first element of an
optimal sequence of performing all unscheduled tasks. Also, in these
equations tf,,, (k) is the last scheduled task given by Fisp (Tfm(k))

35

If T, (k) = @, then

k) = 0
Ti(k+1) = Ti(k)
Ti(k+1) = Tau(k)

which arises when nothing has been sensed or attacked, and no new
tasks have been received over the network. If T = T, = 0 UAV ¢
returns to the home base. This completes the definition of z(k+1).

1V. CLOSED-LOOP SYSTEM PROPERTIES

We assume a fully connected network of N, UAVs. Our analysis
will not consider the arrival or departure of tasks from the system
(e.g., UAVs finding targets that need to be classified or tasks
that are completed). Therefore, in this section we assume that
Ti(k) and TZ(k) are constant for all k; hence, we consider only
the balancing that occurs after a task arrival or departure. This
is valid if balancing occurs relatively fast compared to the task
encounter/completion rate. However, this analysis applies to the
scenario of UAVs completing a mission in the sense that each UAV
is persistently trying to balance its load and therefore the entire
system will persistently balance (even when tasks are found or
completed). We define T%(k) to be the set of tasks formed from
the tasks in the list T¢(k) and the tasks in the set Ti(k). If we
assume that there are no delays, the total number of tasks of the
system at time k is given by

N

Ny Ny
YT R) =Y ITEI+ Y ITik)

which is the total amount of “fixed load” T7 (k) and the tasks T (k)
that have not been assigned to a particular UAV yet. Below assume
Q measures load by the number of tasks.

Theorem 1: For a network of N, UAVs persistently trying to
balance, their load is stable in the sense of Lyapunov.

Stability in this sense means that for any maximum load im-
balance A > 1 we want to have between any two neighboring
UAVs, that is ||T7 (k)| — | T (k)|| < M for all (4,i') € A, and any
initial load conditions, their load will remain close to the desired
maximum load imbalance.

Theorem 2: For a network of N, UAVs persistently trying to
balance, if |T¢(k)| = 1 Vi, k, their load is asymptotically stable in
the large.

Both these results hold if we allow for delays in the commu-
nication network as described in the model. The delays slow the
balancing but do not make it impossible. Of course, both results
involve analysis of properties of a subset of the state of the closed-
loop system. The proof for these theorems can be found in [15].
The next theorems are an extension of some of the theorems found
there.

Next, we focus our attention on the set of UAVs whose load
distribution will not only remain close to a desired state, but is
guaranteed to approach the desired state and remain within the
desired maximum imbalance even when 3i, k : |T7 (k)| > 1 (which
is an important case since problem constraints such as vehicle
capacity may dictate the need to plan its activities further ahead).
Clearly, in this case balancing to within M is not possible for all
UAVs; it is however still possible that a subset of the UAVs (“the
balanced set™) achieves a balanced condition as we show next.

Theorem 3: For a network of N, UAVs persistently trying to
balance, there exists a subset of balanced UAVs with tasks that are
asymptotically stable in the large.

9

We have proven this (and Theorem 4) for the no-delay case.
The size of the balanced set is determined by |T:(k)| and the
total number of unscheduled tasks on all UAVs (e.g., the task
encounter/completion rate).

Theorem 4: For the balanced set of UAVs persistently trying to
balance, if |T7(k)| > 1, their load is guaranteed to have balanced
in a finite number of time steps.

For detailed information about these theorems and their proofs
the reader should contact one of the authors. We are now working
to extend Theorems 3 and 4 to the delay case and to find for
Theorem 4 a tight bound on the amount of time it takes to balance.
Obtaining such a bound is important since it helps to quantify effects
of communication imperfections on cooperation.

V. SIMULATIONS

Here, we compare the performance of a noncooperative strategy
and a cooperative strategy that uses balancing as described above.
The results for N, = 4 are shown in Figure 1. The bottom curve
shows the average total time to complete a mission with 5, 6 and 7
objects using balancing, and assuming perfect communication. The
middle curve shows how performance degrades when we introduce
a random but bounded delay (200s max.) between the vehicles. The
top curve shows the mission time for the noncooperative case. In
the noncooperative as in the cooperative case we use N,-TSP to
initially schedule objects, but the noncooperative does not balance
its tasks as the mission progresses (e.g., tasks are not passed over the
network). In summary, communication delays significantly lower
the benefits of cooperation, and can reduce the cooperative case to
the noncooperative case if we increase the delay more.

3800 T

~4— Noncooperative strategy .
-&— Cooperative with max. defay of 200s
—®— Cooperative with no délay

3600

3400

N
b
=3
k=

w
8
3

Mission time (3)

2800

2400 - L

6.
Number of targes

Fig. 1. Performance measure of Monte Carlo simulations.

VI. REFERENCES

[1] P. Chandler and M. Pachter, “Research issues in autonomous
control of tactical UAV,” in Proceedings of the American
Control Conference, (Philadelphia, Pennsylvania), pp. 394—

398, June 24-26 1998.

[2] R. Beard, T. McLain, and M. Goodrich, “Coordinated target
assignment and intercept for unmanned air vehicles,” in Pro-
ceedings of IEEE International Conference on Robotics and
Automation, (Washington, DC), pp. 2581-2586, May 2002.

P. R. Chandler, M. Pachter, and S. Rasmussen, “UAV co-
operative control,” in Proceedings of the American Control
Conference, (Arlington, Virginia), pp. 50-55, June 2001.

P. Chandler et al., “Complexity in UAV cooperative control,” in
Proceedings of the American Control Conference, (Anchorage,
Alaska), pp. 1831-1836, May 2002.

C. G. Cassandras and W. Li, “A receding horizon approach for
solving some cooperative control problems,” in Proceedings
of the 41st IEEE Conference on Decision and Control, (Las
Vegas, Nevada), pp. 3760-3765, Dec. 2002.

D. A. Castanon and C. G. Cassandras, “Cooperative mis-
sion control for unmanned air vehicles,” in Proceedings of
the AFOSR Workshop on Dynamic Systems and Control,
(Pasadena, California), pp. 57-60, August 2002.

J. Bellingham, A. Richards, and J. How, “Receding hori-
zon control of autonomous aerial vehicles,” in Proceedings
of the American Control Conference, (Anchorage, Alaska),
pp. 3741-3746, May 2002.

K. M. Passino, M. Polycarpou, et al., “Cooperative control
for autonomous air vehicles,” in Cooperative Contorl and
Optimization (R. Murphey and P. M. Pardalos, eds.), vol. 66,
pp. 233-271, Kluwer Academic Publishers, 2002. ’
M. Baum and K. Passino, “A search-theoretic approach to -
cooperative control for uninhabited air vehicles,” in AIAA GNC
Conference, 2001.

J. Hespanha, H. Kizilocak, and Y. Ateskan, “Probabilistic
map building for aircraft-tracking radars,” in Proceedings
of the American Control Conference, (Arlington, Virginia),
pp. 43814386, June 2001.

M. Jun, A. 1. Chaudhly, and R. D’Andrea, “The navigation of

- autonomous vehicles in uncertain dynamic environments: A
case study,” in Proceedings of the 41st IEEE Conference on
Decision and Control, (Las Vegas, Nevada), pp. 3770-3775,
Dec. 2002.)

S. Ganapathy and K. Passino, “Distributed agreement strate-
gies for cooperative control: Modeling and scalability analy-
sis,” in Proceedings of the Conference on cooperative control
and optimization, (Gainsville, FL), pp. 127-147, Dec. 2002.

J. S. Bellingham, M. Tillerson, M. Alighanbari, and J. P. How,
“Cooperative path planning for multiple UAVs in dynamic

. and uncertain environments,” in Proceedings of the 41st IEEE

Conference on Decision and Control, (Las Vegas, Nevada),
pp- 2816-2822, Dec. 2002,
D. R. Jacques and D. P. Gillen, “Cooperation behavior schemes
for improving the effectiveness of autonomous wide area
search munitions,” in Cooperative Contorl and Optimization
(R. Murphey and P. M. Pardalos, eds.), vol. 66, pp. 95-120,
Kluwer Academic Publishers, 2002.

[15} K. Passino and K. Burgess, Stability Analysis of Discrete Event

Systems. John Wiley and Sons, Inc., NY, 1998.
[16] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Com-
putation: Numerical Methods. Athena Scientific, MA, 1997.

(3]

[4

=

(51

(6]

[7

—

18]

{91

[10]

(i

(12]

[13]

[14]

36

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

