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Anomalous Node Detection in Networks with Communities of Different
Size

Juan Campos and Jorge Finke!

Abstract— Based on two simple mechanisms for establishing
and removing links, this paper defines an event-driven model
for the anomalous node detection problem. This includes a
representation for (i) the tendency of regular nodes to connect
with similar others (i.e., establish homophilic relationships); and
(it) the tendency of anomalous nodes to connect to random
targets (i.e., establish random connections across the network).
Our approach is motivated by the desire to design scalable
strategies for detecting signatures of anomalous behavior, using
a formal representation to take into account the evolution
of network properties. In particular, we assume that regular
nodes are distributed across two communities (of different
size), and propose an algorithm that identifies anomalous
nodes based on both geometric and spectral measures. Our
focus is on defining the anomalous detection problem in a
mathematical framework and to highlight key challenges when
certain topological properties dominate the problem (i.e., in
terms of the strength of communities and their size).

I. INTRODUCTION

The lofty aim of network models is to serve as analytical
frameworks that capture the dynamic relationships across
large interconnected systems. It is of interest to understand
how interaction processes explain the formation of structure,
i.e., how mechanisms for establishing and removing links in-
fluence the evolution of topological properties. Mechanism-
based models provide the basis for the design of algorithms
that take account of regular patterns in networks.

A common approach to the anomalous node detection
problem is to study the evolution of local and global prop-
erties, including (i) the proportion of close-knit groups (i.e.,
subgraphs of k nodes, each with at least k/2 neighboring
nodes) [1], [2]; and (ii) the formation of communities (i.e.,
groups of nodes with tight connections within and sparse
connections across them) [3], [4]. How to detect close-knit
groups of anomalous nodes on networks with different-sized
community structures remains an open challenge.

The contribution of this paper is twofold. First, we in-
troduce a model based on two mechanisms, which char-
acterizes how regular nodes impact the size and strength
of communities. Second, we propose an anomalous node
detection algorithm that combines geometric and spectral
network measures. As in [5], our approach aims to effectively
attribute detection signatures to patterns resulting from nodes
that persistently engage in random link attacks (RLAs) [6].
Unlike the work in [5], the design of our algorithm is based
on a representation of interactions underlying the behavior of
regular nodes. We take a discrete-event modelling approach
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and use simulations to give insight into scenarios where the
challenge of how to detect anomalous nodes is significant.
Our results suggest that the ability to detect anomalous nodes
is highly constrained by the degree to which homophilic
relationships impact community strength. The formation of
strong communities of similar size facilitates the detection
of anomalous nodes.

II. PRELIMINARIES
A. Notation

Let G = (G(0),G(1),...) represent a sequence of
unweighted, undirected networks. Each network G(t) =
(N, A(t)) is composed of a set of nodes N = {1,...,n}
and a set of edges A(t). An element {i,j} € A(t) if and
only if node ¢ links to node j, and {i,i} ¢ A(¢t) for all
i € N. Note that the set of nodes N remains constant.
It is composed of anomalous nodes (referred to as nodes
of type 0) and two types of regular nodes (referred to as
nodes of type 1 and 2). The function g : N — {0,1,2}
defines the type of a node. Let Ns = {i € N : g(i) = 6}
be the set of nodes of type §, and ns; = |Ns| the size
of Ns. Assume that no > nj, so that Ny refers to the
majority group whenever there exists a difference in group
size. Let A;(t) = {{j,4} € A(t) : j = i} be the
set of edges that link node ¢ to its neighboring nodes, and
A¢(t) denote the complement of A;(t). Furthermore, let
ki(t) = |A;(t)| denote the number of neighbors of node i,
and k9(t) = |{{i,7} € Ai(t) : g(3) = g(j)}| the number of
same-type neighbors of node i. Moreover, at any time ¢ let
R;(t) € A;(t) be a subset of edges that node 4 is able to
redirect. Consider the following assumption.

Al Suppose that |R;(t)] = |R;(0)] = |R;(0)] = r for

some constant » € N, and R; N R; = @ for all t > 0
and 7,7 € N.

Assumption Al requires that all nodes redirect the same
number of edges. Moreover, each edge is redirected by a
unique node at any time. Based on assumption Al, Section
IIT describes decision-making mechanisms that encourage
regular nodes to connect with other nodes of the same type,
contributing to the formation of communities. In contrast, the
behavior of anomalous nodes is characterized by weak de-
grees of membership to any particular community, resulting
from the following generic behavior.

Definition 1: Random links attacks (RLAs) are a collab-
orative action by a close-knit group of anomalous nodes,
which target randomly selected regular nodes, with no par-
ticular preference for any type of node [6]. An anomalous
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node establishes a link with a regular node with probability
w, (and a link with another anomalous node with probability
1- wa)'

In online social networks, such as Facebook, Google+ or
Twitter, an example of these types of attacks include groups
of fake interconnected users who randomly connect to other
users.

B. Geometric measures

Next consider the following two definitions. The cohesion
index is a distance function, defined based on the number of
same-type nodes in a neighborhood of radius 1.

Definition 2: The cohesion index for the group of nodes

. 1 kS (t) kS
of type 4 is hs(t) = ;- > 7(ry» Where 7- represents the
i€Ns ¢
proportion of neighboring ngdes that are of the same type.
Definition 3: The modularity of the network G(t) is

~ (Ui} € AW : 9(i) = 9(§) = 9]

-3 ( A

_ gt e A®) : 9() =0V g(j )—5|2)
|A()[?

Here, the modularity of the network measures the strength of
community formation based on the number of edges between
nodes of the same type compared to the number of edges
between nodes of different type. It captures the idea of
a community as a group of nodes with higher inter- than
intraconnectivity [3]. Modularity values above 0.3 indicate
that the network exhibits a well-defined community structure
[7]. In particular, note that both the modularity, and the
cohesion indices depend on the number of links established
between nodes of the same type. Unlike the cohesion index,
the modularity yields a single value for the entire network.

C. Spectral measures

An alternative way to describe topological properties is
by using spectral measures. To define them, it is convenient
to refer to G(t) through its adjacency matrix M (t), where
m”(t) = mﬂ(t) =1if {’L,]} S A(t), and mm(t) =0
otherwise. Since M (t) is symmetric, all its eigenvalues are
real numbers. Let A;(t) > Aa(t) > ... > A,(t) be the
eigenvalues associated to M(¢) at time ¢, and let z;(¢)
represent the eigenvector associated to the eigenvalue Aj,
where z;; is the i-th element of z;. Moreover, zi(t) =
(214(t), z2i(t), . .., 2n4(t)) represent the spectral coordinates
associated to node i. When a network has two well-defined
communities, a common approach to approximate the spec-
tral coordinates of node i is to focus the first two entries of
z}(t). Consider the following measure associated to a node.

Definition 4: The node-non-randomness of node ¢ repre-
sents the sum of non-randomness values of all its edges, and
it is denoted by

2

t)=> N(t) 2(t) (1)

Based on eq (1), consider the following algorithm (intro-
duced in [5]) to identify a set of potential anomalous nodes,
denoted by V.

Algorithm 1 Identifying potential anomalous nodes (sus-
pects) based on node-non-randomness

Input: Adjacency matrix M (t)
Output: Set of suspects V(%)
1: Calculate \;(t) and z;(t)

2: for i <~ 1 ton do

3:  Calculate the node-non-randomness f;(t).
4. Calculate BE(t) and BY ().

5. if f; < BF(t) +a(BY (t))'/? then

6: Vs(t) < Vs(t) U {4}

7:  end if

8: end for

9: return V;(t)

A node is considered a potential anomalous node (called
a suspect) if
fi < B +a(BY)'? )

where o = 2 is a design parameter, and

2
R T

j=1 J j=1"7

and

BY =

K2

4k} (

DI T (N o

are the upper bounds of the expected value and variance of
fi» respectively.

D. Performance measures

Nodes identified as anomalous nodes are a subset of the
set of suspect nodes Vs, denoted by V,,. If t € V, CV; C N,
then node ¢ is considered an anomalous node. To evaluate
the performance of detecting anomalous nodes, consider the
following two measures.

Definition 5: The false positive error rate is the number
of regular nodes reported as being anomalous, over the total
number of reported nodes, i.e., e; = |[{{t € NNUNy:i €
A

Definition 6: The true positive error rate is the number of
anomalous nodes that are reported over the total number of
anomalous nodes, i.e., e; = [{i € N : i € V, Ai € No}|/no.

The performance of a detection algorithm is considered
acceptable if e; < 0.05 and e > 0.95.

III. THE NETWORK MODEL

Two simple mechanisms for establishing and removing
links drive the evolution of the network. In particular, every
time index ¢, a randomly selected node 7 redirects links based
on the following mechanisms.

M1 Link connections: If node 7 is a regular node, i.e.,
g(i) € {1,2}, it establishes a new edge to node c,
¢ # i, such that {i,c} ¢ A;. The probability that node
1 links to node ¢ at time ¢ depends on both the type
and the degree of node c, and is given by
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1
me(t) = we ke (t) > wiki(t)
{i,5}EAS(t)
with
e itg@) =gle),
c 1—w if g(3) # g(c).

where k. represents the degree of node ¢, and w the
preference of regular nodes to associate with similar
others.

If node 7 is an anomalous node, i.e., g(i) = 0, then
it engages in a RLA (based on Definition 1). The
probability that node 7 establishes a new link with node
c is given by

Te =
Wq,

ny +ng — (k; — kX (t))

if g(c) € {1,2}.

M2 Link disconnections: Node ¢ removes the link to some
node d # ¢, {i,d} € R;(t), selected according to a
uniformly random distribution.

Note that mechanism M1 promotes connections between
regular nodes of the same type (it captures the proposition
that individuals with shared interest or hobbies tend to have
a higher density of links). Moreover, nodes are more likely
to establish links with nodes with a higher degree. Based
on mechanism M1, it is natural to expect a greater number
of attacks against the majority group. Mechanism M2 forces
node ¢ to remove a link from one of its neighbors, regardless
of the type of node ¢. Together mechanisms M1 and M2
guarantee that the number of edges that a node is able to
redirect remains constant.

Let k%(t) = [k2(t),...,kS(t)]" be the number of same-
type neighbors and k(t) = [ki(t),...,kn(t)]"T be the
total number of neighbors for each node. Furthermore, let

z(t) = [k‘g(t)T, k(t)T}T be the state of the network at
time £.

An event e; occurs at time t, if node ¢ redirects one
of its links according to mechanisms M1 and M2. More
formally, an event e; occurs if e; € ge(x), where g.(z)
denotes a function that enables an event. If e; € g.(z),
then the next state of the network z(¢t + 1) is defined by

x(t+1) = fe(x(t)), where f. is an operator defined by the
following state transitions.
It g(i) = g(d) = g(c):  1f g(i) = g(d) # g(¢)
R (t+1) = k) (t) R(t+1)=k(t)—1
0

If g(i) # g(d) = g(c):
E(t+1)=k(t)+1
E(t+1) =k (@) +1
E(t+1) = k()
If g(i) # g(c) = g(d) or g(i) # g(c) # g(d) # g(4):
E2(t+1) = KX (t)
K (t+1)=E(t)

ko(t+1) = k3(t)
Moreover, it is always the case that
ki(t+1) = ki(t)
ke(t+1) = ko(t) + 1
ka(t +1) = kg(t) —

Note that the cohesion indices of any group at time ¢ can
be specified based on the state of the network (according to
Definition 2).

Finally, we require that the network G(0) satisfies the
following assumptions.

A2 Initial configuration: Each set of regular nodes can
show total cohesion (r < ni); moreover, every node
can connect to both types of nodes at the same time
(r>2).

A3 Persistency of events: If the cohesion index of the
group Nj satisfies 0 < hs < 1, then an event e; € g(x)
occurs.

For each group of regular nodes to be able to reach a co-
hesion index hs = 1, assumption A2 restricts the maximum
number of links that a node can establish. In particular, each
node ¢ € Nj can establish at most min{ns} — 1 links.

The following section describes geometric and spectral
properties of the model.

IV. MODEL PROPERTIES
A. Geometric properties measures

To illustrate the effect of relative group size n1/ns on the
homophilic relationships of regular nodes, consider mecha-
nisms M1 and M2 operating on an initial random network.
Let n = 10* and » = 30. After t = 10°, the cohesion
indices for the minority and majority group reach stationary
values, which are shown in Fig. 1. Note that the cohesion
indices depend on the value of w. Varying the relative size
between groups has a strong effect on the cohesion of both
groups. Note also that for a fixed preference w, different
groups can reach different levels of cohesion, depending on
their relative size: For the majority group, the cohesion index
decreases as the proportion nj /n9 increases; for the minority
group the opposite is true, the cohesion index increases as
n1/ng increases.

Next, Fig. 2(a) shows modularity resulting from varying
relative sizes and preference levels. As expected, the mod-
ularity increases as preference levels increase. According
to Definition 3, the model generates networks with well-
defined community structures, i.e., ¢ > 0.3, for w > 0.8
and nq /ny > 0.75 (highlighted by the box in Fig. 2).
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Fig. 1. Expected cohesion indices for the minority and majority groups.

Fig. 2. Modularity and spectral coordinates.

B. Spectral measures

Fig. 2(b) shows the spectral coordinates for a network
with ni/ny = 0.75 and w = 0.8. As the preference
to associate with similar others increases, two clusters of
nodes are formed, and the projection of node coordinates are
grouped along two quasi-orthogonal lines, which represent
the division of the network into two communities.

V. ANOMALOUS NODE DETECTION

In [5] the authors show that the coordinates of the nodes
engaging in RLAs asymptotically follow a multivariate nor-
mal distribution. We use a similar idea to detect potential
anomalous nodes (suspects) described below as Algorithm 2.
Under the assumption that anomalous nodes form close-knit
groups (in an effort to masquerade as regular nodes), we
also search the set of suspects for subgraphs with a high
link density, described below as Algorithm 3.

A. Identifying suspects across the spectral space

The main idea behind Algorithm 2 is to exploit the fact
that the spectral coordinates of anomalous nodes follow a
normal distribution, which means that the expected value
and variance satisfy the inequalities

ki(t) Elz;(1)]

Elzi(t)] < e
Vies8) < kzr(f) (1 B kzr(f)) A'(lt)z

0.020F
0.0151
0.0101
0.0051

& 0.000/=

=0.005F

=0.010+

=0.015}

0 20 40 60 80 100
Degree k;

Fig. 3. Spectral coordinate: z2 versus node degree. The dashed curves
represent the upper and lower bounds on the expected values of the second
coordinate of a anomalous node with degree k;, E[z2;(t)].

It can be shown that when there is no collaboration be-
tween anomalous nodes (i.e., with w, = 1), both expressions
are satisfied with equality [5]. The upper bounds on the
expected value and variance are

_ ki(t) Blz;(1)]
UE(®D) = ST 3)
Uyi(t) = k’f) (1 - k?) A‘(lt)g. )

Based on Algorithm 2, node ¢ is reported as a suspect if
all its spectral coordinates are within the confidence interval
Elz;i] £ €V (2j;)'/2, where € > 0 is a design parameter that
denotes the 1;—” quantile of the standard normal distribution.
The larger the value of e, the less likely that the algorithm
fails to identify actual anomalous nodes as suspects (which
leads to an increase the true positive error rate). However,
the larger the value of €, the more likely that Algorithm 2
identifies regular nodes as suspects (i.e., thereby increasing
e1). Here we choose ¢ = 2, so that the confidence interval

covers more than the 95%.
Fig. 3 shows the spectral coordinate of 25 for regular

and anomalous nodes as a function of node degree. Note
that the component of the spectral coordinates of anomalous
nodes (marked with crosses) are mostly located in the region
between the bounds; regular nodes fall outside this envelope.

B. Detecting anomalous nodes

Based on the assumption that few regular nodes in the
suspect set Vs have an high number of edges between
them [5], Algorithm 3 identifies suspect nodes that are
involved in dense subgraphs.

VI. ALGORITHM PERFORMANCE
A. Static detection

Previous sections define three different algorithms that
help to identify suspect and anomalous nodes by combining
geometric and spectral measures. In particular, Algorithms 1
and 2 identify suspects, and Algorithm 3, applied on the re-
sulting set of suspects, distinguishes anomalous from suspect
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Algorithm 2 Identifying suspects nodes at time ¢

Input: Adjacency matrix M (t)

Output: Set of suspects V(¢)

1: Calculate \;(t) and z;(t)

2: for j < 1to 2 do

33 fori<1tondo

4 Calculate UJ; (t) and U}, (t) using eq. (3) and (4).

S 2(t) & (UE() — € UY (), UE () + ¢ UYL (1))
then

6 VI(t) < Vi) U {i}

7: end if

8: end for

9: end for

0 Vi(t) e V(1) N V()

11: return V;(t)

—

Algorithm 3 Identify anomalous nodes at time ¢

Input: Set of suspects Vi (t)
Output: Set of anomalous nodes V5 (t)
G4 (t) < subgraph formed by V(t)
j < node with the lowest degree in G(t)
N, < number of nodes in G,(t)
N, < number of edges in G(t)
A* < N./N,
while N,, > 1 do
Gs(t) « Gs(t) without j
Calculate N, and j
N, < N, —1
10 A<« N./N,
11:  if A > A" then
12: A — A
13: V¢ (t) < Nodes of G,(t)
14:  end if
15: end while
16: return V(1)

R e A A S ol S

nodes. In this section, we compare the performance of Algo-
rithm 1 followed by Algorithm 3 (introduced in [5], referred
to as Approach A) with the performance of Algorithm 2
followed by Algorithm 3 (the proposed approach, referred
as Approach B).

v I
1.00 a P % <02 v 80 00 -
o {03, 84, O3 t<—{Os, V4, B3} ]
2
< o, {01, V2, 23
= 0.99 {v2, Oz, 82, A3, P2 {v1, 1,04, 82} ©
S
5 {1, O1, 89, B4 o,
o 0.98
Z ]
? Relative size: Preference: Relative size: Preference: -
a 0.97 A m/my=0.75 1 w=0.80 A ny/my=0.75 1 w=0.80"
?’:; v m/my=0.85 2 w=0.85 v n/m,=0.85 2 w=0.85-
= 0.96 o ny/my=0.9 3 w=0.90 o ony/my=09 3 w=090"
O m/mp=10 4 w=095 O m/my=10 4 w=095-
0.95 ]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False positive error rate False positive error rate
(a) Detection of suspects based on

Algorithm 1.

(b) Detection of anomalous nodes
based on Approach A.

Fig. 4. Detection based on Approach A.
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Fig. 5. Detection Approach B.

To measure the performance of both approaches we gener-
ate different networks with preference levels w varying from
0.8 to 0.95 and relative group sizes ni/ng of 0.75, 0.85,
0.9, and 1.0. Note that the model requires a preference of at
least w = 0.8 to generate a modularity greater than 0.3 (i.e.,
to generate a well-defined community structure). Moreover,
consider w, = 0.7, n = 10%, and ny = 60. We apply the
detection approaches at time ¢t = 10°, after the cohesion
indices for both groups reach stationary values.

Figs. 4(a) and 4(b) show the performance of Algorithm 1
(by itself) and under Approach A. Each data point represents
the average error rate of false positives e; and true positives
ey for 4 simulation runs. For example, V3 represents the
mean performance for networks generated with nq/ny =
0.85 and w = 0.90.

According to Fig. 4(a), note that Algorithm 1 yields a true
positive error rate close to 1.0 for most network variations
(i.e., it detects almost all anomalous nodes), but its false
positive error rate exceeds 0.8 for half the scenarios. This
means that a large number of regular nodes tend to be
reported as potential anomalous nodes. In fact, Algorithm 1
identifies more than 20% of the nodes of the network as
anomalous nodes, especially when the two communities are
significantly different in size and the homophilic relation-
ships are relatively weak (with a preference w lower than
0.90).

Figs. 5(a) and 5(b) illustrate the performance of Algo-
rithm 2 (by itself) and under Approach B for the same
networks. Note that Algorithm 2 makes an effective selection
of suspects (e; < 0.05 and es > 0.95) for almost all network
variations, except for scenarios with relatively low preference
levels (w = 0.8, which results in cohesion indices of 0.8 and
0.7 for the majority and the minority group, respectively).
For networks with weak homophilic relationships, a similar
performance is achieved when Algorithm 3 is applied to the
set of suspects. Approach B shows that for all cases the
performance yields a true positive error rate above 0.95, and
a false positive error rate close to zero.

Note that Algorithm 3 is crucial to improve the perfor-
mance of Approach A, which is not the case for Approach B.
Fig. 6(a) suggests that the low performance of Approach A is
due to the design parameter o (defined in eq. 2). Note that
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the detection bound is appropriate because the variable of
node-non-randomness is a linear combination of non-central
X2 random variables. However, the value of « is too sensitive
to both group size and preference level.

= 0.030
2
< 0.025 acceptable
£ performance
< 0.020
=}
<
g
L 0.015
3
% 0010
s bad
2 0.005 performance
0.000—===""- :
20 40 60 80 100 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94
Degree k; w
(a) Node-non-randomness vs degree. (b) Area of acceptable performance
for Approach A.
Fig. 6. Suspect selection criterium and performance of Approach A.

Fig. 4(b) shows that Approach A yields an acceptable
performance for some networks, while Approach B for all
generated network variations. Fig. 6(b) illustrates the area of
acceptable performance for Approach A as a function of the
level of preference w and the relative group size ny/no. The
area of acceptable performance for Approach B covers all
model parameters considered in Fig. 6(b).

Finally, consider the boundary between the areas of ac-
ceptable and bad performance in Fig. 6(b) (denoted by the
area in white). Note that high values of n,/ns facilitate the
detection of anomalous nodes for Approach A.

B. Dynamic detection

In the previous section we applied the detection algorithms
after the cohesion indices reach stationary values. Next, we
want to determine the time after which applying Algorithm 2
(by itself) or under Approach B would yield an acceptable
performance. For this scenario, we analyze a network gen-
erated by the model with preference level w = 0.85 and
relative group size n;/ny = 0.85, for over 10* time steps.
Moreover, as in the previous section we let w, = 0.7,
n = 10%, and ny = 60.

Figs. 7(a) and 7(b) illustrate the dynamic behavior of 1000
regular nodes together with a set of anomalous nodes. The
shade of each block represents the frequency with which
a set of 20 nodes is reported as anomalous. Black blocks
represent groups of nodes where each of them is reported as
anomalous node, and the white blocks means that none of
the 20 nodes is accused as an anomalous node. The first three
blocks represent the actual set of nodes performing RLAs.

According to Figs. 7(a) and 7(b) the time indices from
which an acceptable performance can be expected are
t = 500 x 102 for Algorithm 2 (by itself) and ¢ = 250 x 102
under Approach B. Fig. 7(b) shows that Approach B has an
acceptable performance when the cohesion indices of both
groups of regular nodes reach 80% of their final stationary
value. Note that Algorithm 2 alone requires that these levels
reach at least 90% of their final values (see Fig. 7(a)).

—

o

o
=Y

SOOIPU] UOISAY0))

Block of nodes
o
=

-y =, 102
=hy = hy
18 30 70 200 600 T4 8 30 70 200 600
10°t 10°t

(b) Detection of anomalous nodes
by Approach B.

(a)Detection of suspects by
Algorithm 2.

Fig. 7. Dynamic detection.

VII. CONCLUSIONS AND FUTURE WORK

The proposed detection algorithm exploits the distribution
of the spectral coordinates of the nodes, identifying anoma-
lous nodes with a negligible false positive error rate for all
network variations. Simulations show that the performance
of previous approaches strongly depends on the relative
difference in community size, and the level of preference
of regular nodes to associate to similar others.

The network model also provides good insight into the
challenges of dynamic detection of anomalous nodes. In
particular, it serves as an analytical framework to establish
detection thresholds for acceptable performance. Analyzing
the behavior of the proposed algorithm over time, it suggests
that cohesion indices of groups of regular nodes is a key
criterion to determine the effectiveness of dynamic detection
algorithms. Analyzing the behavior of the proposed approach
when more than two groups make up the community struc-
ture of a network remains a future research direction.
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