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Abstract— Network models are a useful tool to describe and
predict dynamic relationships in large collections of data. Char-
acterizing these relationships helps us to explain the emergence
of structure as a systematic deviation from random connectivity.
This paper introduces an event-driven model that captures the
effects of three simple network formation mechanisms: random
attachment (a generic abstraction of how a new incoming node
connects to a network), triad formation (how the new node
establishes transitive relationships), and network response (the
way the overall network reacts to attachments). Our work
focuses on the impact of the latter on clustering and degree
distributions. We prove that any initial network will reach
stationary local clustering coefficients, and obey an extended
power law distribution for the in-degree and an exponential
distribution for the out-degree. For the in-degree in particular,
the response mechanism amplifies the scaling behavior that
results from the other two mechanisms.

I. INTRODUCTION

Dynamic network models are a useful tool to describe
the evolution of relationships in large sets of data. Modeling
the dynamics of structure provides the analytical basis for
predicting global and local patterns of connectivity, charac-
terizing sometimes subtle but systematic deviations that re-
sult from specific sensing and decision-making mechanisms
(e.g., how reciprocal responses shape the degree distributions
of human communication networks).

The mechanisms of preferential attachment and triad for-
mation are believed to underlie a wide class of empirical
networks [1]. Models combining these two mechanisms have
been able to explain the emergence of extended power
laws in the degree distribution of growing, highly-clustered
networks (i.e., where nodes with a high degree obey a
power law distribution, and nodes with a low degree an
exponential distribution). Less attention has been paid to
formation mechanisms where reciprocity, an essential feature
in human communication networks, is thought to be the basis
for establishing numerous links. A better, understanding of
the impact of reciprocal responses on the in- and out-degree
distributions and the local clustering coefficients of networks
remains an open challenge [2], [3].

This work introduces a simple network response mech-
anism, comprised of random and reciprocal approaches,
and explains how random attachment and triad-formation,
together with the proposed response mechanism, impact the
structure of growing networks. It is closely related to the
work in [4]–[6], which proposes various formation mod-
els that characterize the degree distribution and clustering
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properties of growing networks, but which does not consider
the effects of reciprocity. Our main results present analytical
expressions for the asymptotic behavior of (i) the cumulative
distribution functions of the in-degree and out-degree, and
(ii) the local clustering coefficients for reciprocal networks.

II. A NETWORK FORMATION MODEL

Consider an ordered set of graphs G = {G(0),G(1), . . .},
where each graph G(t) = (H(t),A(t)) describes a network
at time index t with a set of nodes H(t) = {1, . . . , Nt}
and a set of directed edges A(t) = {(i, j) : i, j ∈ H(t)}.
The pair (j, i) ∈ A(t) indicates that there exists an edge
from node j to node i at time t, and Qi(t) = {j ∈ H(t) :
(j, i) ∈ A(t)} represents the set of incoming neighbors of
node i. Let ki(t) = |Qi(t)|, ki(t) ≥ 0, represent the in-
degree of node i. Similarly, Q̂i(t) = {j ∈ H(t) : (i, j) ∈
A(t)} represents the set of outgoing neighbors of node i
and k̂i(t) = |Q̂i(t)|, k̂i(t) > 0, its out-degree. Assume
the following mechanisms underlie the process of network
evolution.
M1 Random attachment: A new node links to m ≥ 1,

m ∈ Z+, different nodes, selected according to a
uniformly random distribution over H(t− 1).

M2 Triad formation: For every link that a new node estab-
lishes during random attachment, it tries to establish
an additional link within the new neighborhood. In
particular, if node j /∈ H(t− 1) connects to some node
j′ ∈ H(t−1), it may also connect to an outgoing neigh-
bor of node j′ with probability 0 < πf ≤ 1 (selected
again according to a uniformly random distribution over
Q̂j′(t− 1)).

M3 Network response: There are two ways the network
responds to the attachment of a new node. The first
approach is based on reciprocity: Each of the m ran-
domly selected nodes establishes a reciprocal link with
probability 0 ≤ πr ≤ 1. The second approach shows
no preference for establishing reciprocal links: A set
of n ≥ 0 randomly selected nodes connect to the new
node.

Note that if both πr = 0 and n = 0, that is, the existing
nodes do not respond to node attachment, then mechanisms
M1-M2 alone cannot induce directed cycles. Note also that
the model does not allow self-loops.

To ensure that the formation mechanisms are properly
defined, we require the following assumptions.
A1 The initial network: The network G(0) is weakly con-

nected and has more than 2m nodes, each with at least
one outgoing neighbor.
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A2 The event-time incidence rate: Mechanisms M1-M3 are
triggered every index t ∈ T , where T is a set of
uniformly distributed time indices.

Here, we let a new node attach to the network every time
index t, which implies that H(t) = {1, . . . , N0 + t} where
N0 ≥ 2m indicates the number of nodes at t = 0.

III. IN-DEGREE DISTRIBUTION

The following theorem presents sufficient conditions that
guarantee that mechanisms M1-M3 yields a scaling behavior
in the in-degree distribution of the network.

Theorem 1 (power law in-degree distribution): Suppose
that assumptions A1-A2 hold. The asymptotic behavior
of the in-degree distribution pk(t) follows a power law
pk(t)|t→∞ ∼ k−α with scaling exponent

α = 2 +
1

πf
+
πr
πf

+
n

mπf

for nodes with a degree k � (α− 1)m.
Proof: Note that the expected in-degree of a randomly

selected node at any time index t depends on all three
mechanisms. However, to characterize the rate of change
of the in-degree of a node (node i), we only need to take
into account the formation of newly established incoming
edges, which can only occur due to mechanisms M1-M2
(mechanism M3 can only establish outgoing edges at t 6= ti).
According to mechanism M1 and assumption A2, the instant
node j /∈ H(t − 1) joins the network, t = tj 6= ti, it
connects to m different nodes based on a uniform random
attachment process. The probability that node j attaches to
node i ∈ H(t − 1) is m

N0+t−1 . If during attachment node
j connects to an incoming neighbor of node i (some node
j′ ∈ Qi(t)), then it establishes an additional link to node i
with probability πf (based on mechanism M2). On average,
triad formation increases the rate of change of the in-
degree of node i by

(
mki(t)
N0+t−1

)(
πf

m(1+πf )+n+mπr

)
. The first

term represents the probability of selecting, during random
attachment, an incoming neighbor of node i. The second
term represents the probability of choosing any outgoing
neighbor of node j′ (including node i) and forming a triad. In
particular, note that the expected out-degree of node j′ is the
sum of the number of outgoing edges established at time tj′
(i.e., m edges according to mechanism M1 plus an expected
mπf additional edges according to mechanism M2) and the
expect number of edges established based on mechanism M3.
The overall rate of change of ki(t) is

dki(t)

dt
=
m(m(1 + πf + πr) + n) +mπfki(t)

(N0 + t− 1)(m(1 + πf + πr) + n)
(1)

with boundary condition ki(ti) = n + mπr (which corre-
sponds to the average number of incoming edges established
at time ti through both approaches for mechanism M3). The
solution to eq. (1) is

ki(t) = (m(1 + πr) + n)

(
1 +

1

πf

)(
N0 + t− 1

N0 + ti − 1

) 1
α−1

−m(α− 1) (2)

where α = 1 +
(

1 + 1
πf

+ πr
πf

+ n
mπf

)
. The analytical

expression for the cumulative distribution of the in-degree
of node i equals

P [ki(t) ≤ k] = P

[
ti ≥

(
(m(1 + πr) + n)(πf + 1)

πf (k +m(α− 1))

)α−1
(N0 + t− 1)− (N0 − 1)

]

Because new nodes are added at a constant rate
over time (according to assumption A2), letting
Pk(t) = P [ki(t) ≤ k], we know

Pk(t) =
1

t

[
t−
(

(m(1 + πr) + n)(πf + 1)

k +m(α− 1)

)α−1
(N0 + t− 1) + (N0 − 1)

] (3)

As t→∞

Pk(t)|t→∞ = 1−

 (m(1 + πr) + n)
(

1 + 1
πf

)
k +m(α− 1)

α−1

(4)

Finally,

pk(t)|t→∞ =
dPk(t)

dk

∣∣∣∣
t→∞

= d1 (k +m(α− 1))
−α (5)

where d1 = (α − 1)
(

(m(1 + πr) + n)
(

1 + 1
πf

))α−1
and

α = 2 + 1
πf

(
1 + πr + n

m

)
. When k � (α − 1)m, eq. (5)

represents a power law that satisfies pk(t)|t→∞ ∼ k−α.

Theorem 1 implies that the probability distribution of the
in-degree becomes stationary as the network grows in size.
This distribution follows a power law for nodes with a degree
much greater than (α− 1)m. Note that the scaling exponent
depends on the parameters of all three mechanisms, and that
both the ratio n

m and the probability πr have similar effects
on the exponent α. Figure 1 shows the resulting scaling
exponent α for different values of n and varying m,πr, and
πf . Note that small values of πf have the largest impact
on α. Empirical networks usually have a scaling exponent
α ≤ 5, suggesting that the parameter of the triad formation
should be bounded be bounded by πf ≥ 0.6 [7]. Note also
that both approaches for the response mechanism amplify the
scaling behavior. For nodes with a low degree, we obtain the
following result.

Corollary 1 (exponential in-degree distribution):
Suppose that assumptions A1-A2 hold. The asymptotic
behavior of the in-degree distribution pk(t) follows an
exponential form pk(t)|t→∞ ∼ exp(−λk) with exponent

λ =
πf

m(πf + 1 + πr) + n)
+

1

m
(6)

for nodes with a degree k � m
mλ−1 .
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(a) (b)

(c)

Fig. 1. Scaling exponent for different values of n and fixed values m = 5,
πf = 0.8, and πr = 0.6; (a) varying m; (b) varying πf ; (c) varying πr .

Proof: Using eq. (5), note that when k � (α−1)m we
know that

ln pk(t)|t→∞ ∼ −α ln(k + (α− 1)m)

= −α
[
ln

(
1 +

k

(α− 1)m

)
+ ln((α− 1)m)

]
∼ −α

[
k

(α− 1)m
+ ln((α− 1)m)

]
and applying the exponential function on both sides, we

obtain

pk(t)|t→∞ ∼ ((α− 1)m)−α exp

(
−α k

(α− 1)m

)
(7)

When k � (α − 1)m = m
mλ−1 , eq. (7)

is proportional to the general form exp(−λk) with
λ = α

(α−1)m =
m(2πf+1+πr)+n
m(m(πf+1+πr)+n)

=
πf

m(πf+1+πr)+n)
+ 1

m .

Corollary 1 means that for nodes with a degree much
smaller than m

mλ−1 , the in-degree distribution has an expo-
nential exponent that depends on the parameters of all three
mechanisms.

Combined, Theorem 1 and Corollary 1 show that the
network follows what is called an extended power law
distribution with threshold ε = (α − 1)m = m

mλ−1 . In
general, network response has a noticeable effect on both
the scaling and exponential exponents. Figure 2 quantifies
how variations in any of the three mechanisms affect the
complementary cumulative in-degree distribution of the net-
work. The plots at the top illustrate the impact of random
attachment and triad formation, and the plots at the bottom
of the response mechanism. The vertical lines represent the
transitions from an exponential to a power law distribution.

Based on eq. (6), it is easy to see that the number of
links established during random attachment has a significant
effect on the head of the distribution. All parameters have a
significant effect on the tail.

(a) (b)

(c) (d)

Fig. 2. Complementary cumulative in-degree distribution on a logarithmic
scale; (a) variation in the number of edges formed due to random attachment;
(b) variation in the probability of forming triads; (c) variation in the number
of edges established due to the random response; (d) variation in the
probability of forming reciprocal edges.

IV. OUT-DEGREE DISTRIBUTION

The following theorem presents sufficient conditions that
guarantee that the proposed mechanisms yield an exponential
out-degree distribution.

Theorem 2 (exponential out-degree distribution):
Suppose that assumptions A1-A2 hold and mechanism
M3 satisfies n > 0 or πr > 0. The asymptotic behavior
of the out-degree distribution pk̂(t) follows an exponential
form pk̂(t)

∣∣
t→∞ ∼ exp(−βk̂) with exponent

β =
1

n+mπr

for any node with out-degree k̂ � m(1 + πf ).

Proof: Note that the out-degree of a randomly selected
node (node i) at time index t depends, again in general, on all
mechanisms. However, to characterize the rate of change of
the out-degree, we only need to take account of the additional
edges established due to network response. According to
mechanism M1 and assumption A2, when node j /∈ H(t−1)
attaches to the network at time t = tj , the probability that it
connects to node i ∈ H(t − 1), and that node i establishes
a reciprocal edge (based on mechanism M3) is mπr

N0+t−1 .
Random response increases the rate of change of the out-
degree of node i by n

N0+t−1 . Thus, the overall rate of change
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of the out-degree of node i, denoted by k̂i(t), is

dk̂i(t)

dt
=

mπr
N0 + t− 1

+
n

N0 + t− 1
(8)

with boundary condition k̂i(ti) = m + mπf (which corre-
sponds to the number of outgoing edges established by node i
at time ti due to mechanisms M1 and M2). The solution to
eq. (8) is

k̂i(t) = m(1 + πf ) + (n+mπr) ln

(
N0 + t− 1

N0 + ti − 1

)
(9)

Using eq. (9), the analytical expression for the cumulative
distribution of the out-degree of node i equals

P [k̂i(t) ≤ k̂] = P

[
ti ≥ exp

(
m(1 + πf )− k̂
n+mπr

)

(N0 + t− 1)− (N0 − 1)

]
As in the proof of Theorem 1, because new nodes are

added at a constant rate over time (according to assump-
tion A2), and letting Pk̂(t) = P

[
k̂i(t) ≤ k̂

]
we know

Pk̂(t) =
1

t

[
t− exp

(
m(1 + πf )− k̂
n+mπr

)

(N0 + t− 1) + (N0 − 1)

] (10)

and as t→∞

Pk̂(t)
∣∣
t→∞ = 1− exp

(
m(1 + πf )− k̂
n+mπr

)
(11)

Finally,

pk̂(t)
∣∣
t→∞ =

dPk̂(t)

dk̂

∣∣∣∣
t→∞

= d2 exp

(
−k̂

n+mπr

)
(12)

where d2 = 1
n+mπr

exp
(
m(1+πf )
n+mπr

)
. Note that

eq. (12) obeys an exponential distribution of the form
pk̂(∞) ∼ exp(−βk̂), where β = 1

n+mπr
for any node with

out-degree k̂ � m(1 + πf ).
Theorem 2 implies that the resulting probability distri-

bution of the out-degree has an exponential exponent that
depends on the parameters of both random attachment and
network response, but not on triad formation. Note that
according to eq. (11), as a consequence of the parameters
that specify mechanisms M1 and M2, there does not exits
any node with an out-degree k̂ ≤ m(1 + πf ).

Figure 3 quantifies how the mechanisms affect the com-
plementary cumulative out-degree distribution (eq. (11)).
The plots at the top examine the mechanisms of random
attachment and triad formation; the plots at the bottom
the two approaches for network response. Note that the
values of m, n, and πr can significantly impact the out-
degree distribution. However, triad formation does not have
a significant impact on the slope of the tail of the distribution

(a) (b)

(c) (d)

Fig. 3. Complementary cumulative out-degree distribution on a semi-
logarithmic scale; (a) variation in the number of edges formed due to random
attachment; (b) variation in the probability of forming triads; (c) variation
in the number of edges established through random response; (d) variation
in the probability of forming edges due to reciprocal response.

for the out-degree.

V. LOCAL CLUSTERING COEFFICIENT

To characterize the evolution of the local clustering, we
use the following definition of a triad.

Definition 1 (triad): Consider three nodes i, j, j′ ∈ H(t)
be such that (j′, j) ∈ A(t). A subgraph is said to be a triad
involving node j′ if

1) (j′, i) ∈ A(t) and either (j, i) or (i, j) ∈ A(t); or
2) (i, j) ∈ A(t) and (i, j′) ∈ A(t).

In other words, triads represent all possible interconnec-
tions between three nodes, except the two closed three-way
cycles. The local clustering coefficient of node i describes
the ratio between the number of triads involving node i
and the total number of possible triads that could involve
this particular node. We are interested in understanding the
evolution of the average local clustering coefficient that
involves nodes with a particular in-degree.

To characterize the dynamics of clustering, we first need
to express the (expected) out-degree of node i as a function
of its in-degree.

Lemma 1 (expected out-degree of a node): Suppose that
assumptions A1-A2 hold. The expected out-degree of node i
is given by

k̂i(t) = m(1 + πf ) + (n+mπr)(α− 1)

ln

(
πf (ki(t) + (α− 1)m)

(n+m(1 + πr))(1 + πf )

)
(13)

The proof of Lemma 1 follows directly from eqs. (2)
and (9). The following theorem presents sufficient conditions
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to guarantee that mechanisms M1-M3 yield stationary local
clustering coefficients.

Theorem 3 (clustering): Suppose that assumptions A1-A2
hold. The asymptotic behavior of the average local clustering
coefficient over all nodes with in-degree k satisfies

c(k) =
2(πr + 1)

πf (k + f(k))(k + f(k)− 1)

(
(n+m(1 + πf + πr))

(πf − 1) ln

(
πfk + (1 + πf + πr)m+ n

(n+m(1 + πr))(1 + πf )

)
+ πf (k − n+m(πf − πr))

)
where f(k) = m(1 + πf ) + (n + mπr)(α − 1)

ln
(

πf (ki(t)+(α−1)m)
(n+m(1+πr))(1+πf )

)
.

Proof: To capture the expected local clustering coeffi-
cient of a randomly selected node (node i), we calculate,
based on its total degree (in-degree plus out-degree), the
expected number of triads and the maximum number of
possible triads that involve node i. First, to estimate the
maximum number of possible triads, we consider the number
of possible pairs of incoming and outgoing edges of node i.
Based on eq. (13), let k̂i(t) = f(ki(t)). Then, for a fixed time
index t, the total degree of node i is ki+f(ki). The maximum
number of possible pairs of incoming and outgoing edges of
node i is

Ωi =

(
ki + f(ki)

2

)
=

(ki + f(ki))(ki + f(ki)− 1)

2
(14)

Now, to capture the expected number of triads that involve
a randomly selected node with in-degree ki(t), we estimate
the rate of change of the number of triads involving node i.
Figure 4 illustrates all the possible link configurations that,
according to Definition 1, may precede the formation of a
triad.

i

j’ j

M
3 

(r
ec

.)

 M2

M
1

(a)

i

 M1

M
2

M3(rec.)

j’ j

(b)

i

M
2

j’ j

M
3 

(r
ec

.)
M

1

     

(c)

Fig. 4. Possible link configurations involving node i; (a) node i has one
incoming edge established through M1 and one outgoing edge; (b) node i
has two incoming edges, one of them established through M2; (c) node i
has two outgoing edges, one established through M1 and one through M2.
M1 indicates an edge established through random attachment, M2 through
triad formation, and M3(rec) through the reciprocal response approach of
network response.

According to Figure 4(a), node i has an incoming edge
that was established through random attachment from some
node j′, and an outgoing edge (established through any other
mechanism). The triad is complete when node j′ connects to
one of the neighbors of node i. The probability of completing
the triad and that another triad is formed because of recipro-
cal response is mπf

N0+t−1 (1 + πr). According to Figure 4(b),

node i has an incoming edge from some node j (established
through any mechanism) and the new node connects to
node j through the process of random attachment. The triad
will be closed if node j′ connects to node i, which happens
with probability πf . Based on the probability of forming
a triad with an edge that contributes to the in-degree of
node i and due to the reciprocal response mechanism, on
average, the rate of change of the maximum number of triads
involving node i increases by mki(t)

N0+t−1
πf

m(1+πf+πr)+n
(1+πr).

The overall rate of change of the expected number of triads
involving node i is

dωi(t)

dt
=

mπf
N0 + t− 1

(1 + πr) +

(
ki(t)(1 + πr)

(α− 1)(N0 + t− 1)

)
and using eq. (2), we obtain

dωi(t)

dt
=

1 + πr
N0 + t− 1

(
m(πf − 1) +

1

α− 1

(
1 +

1

πf

)

(n+m(1 + πr))

(
N0 + t− 1

N0 + ti − 1

) 1
α−1

)
(15)

with boundary condition ωi(ti) = mπf + mπfπr (which
corresponds to Figure 4(c) and indicates the number of triads
that involve node i at t = ti; note that triads may be formed
through mechanisms M2-M3). The solution to eq. (15) is

ωi(t) =
πr + 1

πf

(
(πf − 1)mπf ln

(
N0 + t− 1

N0 + ti − 1

)
+ (πf + 1)(m(1 + πr) + n)

(
N0 + t− 1

N0 + ti − 1

) 1
α−1

+m(πf (πf − πr − 1)− πr − 1)− n(πf + 1)

)
Moreover, using eq. (2), we know that

ωi(t) =
πr + 1

πf

(
(πf − 1)(n+m(1 + πf + πr))

ln

(
πfki(t) + (1 + πf + πr)m+ n

(n+m(1 + πr))(1 + πf )

)
+ (ki(t)− n+m(πf − πr))πf

)
(16)

Finally, for a fixed time index t, dividing the expected
number of triads (eq. (16)) by the maximum number of pos-
sible triads (eq. (14)), we know that the clustering coefficient
of node i with in-degree ki = k satisfies

c(k) =
2(πr + 1)

πf (k + f(k))(k + f(k)− 1)

(
(n+m(1 + πf + πr))

(πf − 1) ln

(
πfk + (1 + πf + πr)m+ n

(n+m(1 + πr))(1 + πf )

)
+ πf (k − n+m(πf − πr))

)
(17)

Theorem 3 implies that for a large enough network, its
clustering properties do not depend on the initial network
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G(0) or its current size (i.e., the local clustering coefficients
of G(t) do not vanish as t tends to infinity). Figure 5
quantifies how the different mechanisms affect the clustering
properties. The curves represent the theoretical predictions
according to eq. (17) for different values of m,πf , n, and
πr. Note that three of the parameters (m,πf , and n) do not
affect the local clustering coefficient for large values of k.
It is important to highlight that the reciprocal response is
the only mechanism that impacts the coefficient for nodes
with a high degree. In particular, small values of πr, yield
smaller clustering coefficient for nodes with a high degree.
The combination of the three mechanism results in a well-
defined relationship between nodes with a high degree and
their local clustering properties. In particular, as the network
grows in size, the clustering coefficient ci of a node with
in-degree k satisfies ci ∼ dk−1 for some d > 0.

(a) (b)

(c) (d)

Fig. 5. Local clustering coefficient; (a) variation in the number of
edges formed due to random attachment; (b) variation in the probability
of forming edges due to triad formation; (c) variation in the number of
edges established through random response; (d) variation in the probability
of forming reciprocal edges.

VI. SIMULATIONS

To gain further insight into the network formation model,
let N0 = 10, m = 5, πf = 0.8, n = 2, and πr = 0.6.
Figure 6 shows the clustering coefficient at different time
instances. The dots represent the simulation of the process
and the solid curves indicate the analytical prediction. Note
that at t = 100 × 103, the clustering coefficient reaches a
stationary value. However, depending on the combination of
the model parameters, simulations may require t > 300 ×
103.

VII. CONCLUSIONS

This work explains how random attachment and triad-
formation, together with network response, impact the dy-

c(
k)

Fig. 6. Local clustering coefficient at different time instances.

namics of the structure of growing networks. The proposed
model generates networks with an extended power law in-
degree, and exponential out-degree distribution, and with
a stationary clustering properties (i.e., the local clustering
coefficients of the network do not vanish as it grows). We
show that the response mechanism, in particular, plays an
important role in the formation of clustered networks with
high scaling coefficients. Evaluating whether these properties
are stable is an important direction for future research.
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