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Review
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• Stability for continuous systems 

• Stability in the sense of Lyapunov 

• Asymptotic stability 

• Exponential stability 

• Lyapunov’s second method 

• Stability of Linear systems



Stable (in the sense of Lyapunov)
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Equilibrium points represent stationary conditions for the dynamics

 

The equilibria of the system x = f(x) are the points xe such that f(xe) = 0.
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!

-2" 0 2"

-2

0

2

x1

x2

9 Oct 06 R. M. Murray, Caltech CDS 6

Stability of Equilibrium Points

An equilibrium point is:

Asymptotically stable if all 
nearby initial conditions con-
verge to the equilibrium point

! Equilibrium point is an attractor 

or sink

Unstable if some initial conditions 
diverge from the equilibrium point

! Equilibrium point is a source 

(or saddle)

Stable if initial conditions that 
start near the equilibrium point, 
stay near

! Equilibrium point is a center
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e.p. (equilibrium point) is a center
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For every ✏ > 0, there exists a � = �(✏) > 0 such that,
if kx(0)� xek < �, then kx(t)� xek < ✏, for every t � 0.



Switched Systems

x(t)

x(t)

x(t)
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Asymptotically Stable
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 5

e.p. is an attractor or sink

Lyapunov stable

There exists � > 0 such that if kx(0)� xek < �,
then limt!1 kx(t)� xek = 0.

1.

2.



Exponentially stable
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Asymptotically stable1.

2. There exist ↵,�, � > 0 such that if kx(0)� xek < �,
then kx(t)� xek  ↵kx(0)� xeke��t, for t � 0.

Any e.p. that is exponentially stable 
systems is also asymptotically stable.

↵kx(0)� xeke��t
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Lyapunov Second Method

A general task about the stability of motion  
(Общая задача об устойчивости движения)

Remarks:

1. To see the difference between positive definite and positive semi-definite, suppose that x ∈ R2

and let
V1(x) = x2

1 V2(x) = x2
1 + x2

2.

Both V1 and V2 are always non-negative. However, it is possible for V1 to be zero even if
x "= 0. Specifically, if we set x = (0, c) where c ∈ R is any non-zero number, then V1(x) = 0.
On the other hand, V2(x) = 0 if and only if x = (0, 0). Thus V1(x) is positive semi-definite
and V2(x) is positive definite.

Theorem 1. Let V be a non-negative function on Rn and let V̇ represent the time derivative of V

along trajectories of the system dynamics (1):

V̇ =
∂V

∂x

dx

dt
=

∂V

∂x
F (x).

Let Br = Br(0) be a ball of radius r around the origin. If there exists r > 0 such that V is
positive definite and V̇ is negative semi-definite for all x ∈ Br, then x = 0 is locally stable in the
sense of Lyapunov. If V is positive definite and V̇ is negative definite in Br, then x = 0 is locally
asymptotically stable.

Remarks

1. A function V satisfying the conditions of the theorem is called a Lyapunov function.

2. V (x) is an “energy like” function that bounds the size of x.

V (x) = c1

dx

dt

∂V

∂x

V (x) = c1

Example 1.

ẋ1 = −x1 − x2 V (x) = x2
1 + x2

2 > 0 ∀x "= 0

ẋ2 = −x2 V̇ (x) = 2x1ẋ1 + 2x2ẋ2

= −2x2
1 − 2x1x2 − 2x2

2

= −(x1 + x2)
2 − x2

1 − x2
2 < 0 ∀x "= 0

=⇒ globally asymptotically stable.

2

stable in the
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For linear systems: 

• Let 

• V positive definite ⇔ P positive definite matrix  
(P > 0): 

• Compute its derivative:

To fix this problem, we skew the level sets slightly, so that the flow of the system crosses the level
surfaces transversely. Define

V (x, t) = 1
2

[

q

q̇

]T [

k εm

εm m

] [

q

q̇

]

= 1
2 q̇mq̇ + 1

2qkq + εq̇mq,

where ε is a small positive constant such that V is still positive definite. The derivative of the
Lyapunov function becomes

V̇ = q̇mq̈ + qkq̇ + εmq̇2 + εqmq̈

= (−c + εm)q̇2 + ε(−kq2 − cqq̇) = −

[

q

q̇

]T [

εk 1
2εc

1
2εc c − εm

] [

q

q̇

]

.

The function V̇ can be made negative definite for ε chosen sufficiently small (exercise) and hence
we can conclude exponential stability.

Remarks

1. As the previous example shows, a Lyapunov function need not be unique and different Lya-
punov functions can give stronger stability results.

2. Lyapunov functions can also be used to prove that a system is unstable: search for V positive
definite with V̇ positive definite.

3 Lyapunov Functions for Linear Systems

Consider a linear system of the form
ẋ = Ax.

Search for a quadratic Lyapunov function

V (x) = xT Px

Compute the derivative
dV

dt
=

∂V

∂x

dx

dt
= xT (AT P + PA)x.

The requirement that V is positive definite is equivalent to P > 0 and the requirement that V̇ is
negative definite becomes a condition that

Q = AT P + PA < 0 (2)

(as a matrix).

Trick: equation (2) is linear in P . So we can choose Q < 0 and the solve for P .
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How to find a Lyapunov function?

• Solve for P and verify whether P > 0 

V (x) = x>Px

x>Px > 0 for all x 6= 0



For every negative definite Q=Q T there exits a 
positive definite P=P T such that 

If and only if 

for all i
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Real part of the eigenvalues of A are negative 
determines the stability properties of linear systems
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Re{�i} < 0



Today
• Stability of a subclass of hybrid systems 

• Stability properties of switched systems 

• Multiple Lyapunov functions 

• Common Lyapunov function 

➡ Do solutions converge to an equilibrium? 

➡ How to choose a stabilizing sequence? 

• Next class: how to extend stability results to a 
larger class of hybrid systems 
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Equilibrium point
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Stability concepts
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where .



Stability analysis
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as an



Vq (x (t))

t



Stability analysis
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Stability analysis
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