Lecture 6

Review

- Stability for continuous systems
 - Stability in the sense of Lyapunov
 - Asymptotic stability
 - Exponential stability
- Lyapunov's second method
- Stability of Linear systems

Stable (in the sense of Lyapunov)

For every $\epsilon > 0$, there exists a $\delta = \delta(\epsilon) > 0$ such that, if $||x(0) - x_e|| < \delta$, then $||x(t) - x_e|| < \epsilon$, for every $t \ge 0$.

e.p. (equilibrium point) is a center

Asymptotically Stable

- 1. Lyapunov stable
- 2. There exists $\delta > 0$ such that if $||x(0) x_e|| < \delta$, then $\lim_{t \to \infty} ||x(t) - x_e|| = 0$.

e.p. is an attractor or sink

Exponentially stable

- 1. Asymptotically stable
- 2. There exist $\alpha, \beta, \delta > 0$ such that if $||x(0) x_e|| < \delta$, then $||x(t) - x_e|| \le \alpha ||x(0) - x_e|| e^{-\beta t}$, for $t \ge 0$.

Any e.p. that is exponentially stable systems is also asymptotically stable.

Lyapunov Second Method

Theorem 1. Let V be a non-negative function on \mathbb{R}^n and let \dot{V} represent the time derivative of V along trajectories of the system dynamics (1):

$$\dot{V} = \frac{\partial V}{\partial x}\frac{dx}{dt} = \frac{\partial V}{\partial x}F(x).$$

Let $B_r = B_r(0)$ be a ball of radius r around the origin. If there exists r > 0 such that V is positive definite and \dot{V} is negative semi-definite for all $x \in B_r$, then x = 0 is stable in the sense of Lyapunov. If V is positive definite and \dot{V} is negative definite in B_r , then x = 0 is locally asymptotically stable.

A general task about the stability of motion (Общая задача об устойчивости движения)

How to find a Lyapunov function? For linear systems:

- Let $\dot{x} = Ax$.
- V positive definite $\Leftrightarrow P$ positive definite matrix (P > 0): $V(x) = x^{\top} P x$

• Compute its derivative: $x^{\top}Px > 0$ for all $x \neq 0$

$$\frac{dV}{dt} = \frac{\partial V}{\partial x}\frac{dx}{dt} = x^T(A^TP + PA)x \qquad Q = A^TP + PA < 0$$

• Solve for P and verify whether P > 0

For every negative definite $Q=Q^{T}$ there exits a positive definite $P=P^{T}$ such that

$$Q = A^T P + P A < 0$$

If and only if

 $Re\{\lambda_i\} < 0$

for all *i*

Real part of the eigenvalues of A are negative determines the stability properties of linear systems

Today

- Stability of a subclass of hybrid systems
- Stability properties of switched systems
 - Multiple Lyapunov functions
 - Common Lyapunov function
 - Do solutions converge to an equilibrium?
 - How to choose a stabilizing sequence?
- Next class: how to extend stability results to a larger class of hybrid systems

Equilibrium point

Definition 4.1 (Equilibrium) $x = 0 \in \mathbb{R}^n$ is an equilibrium point of H if:

1.
$$f(q,0) = 0$$
 for all $q \in \mathbf{Q}$, and

 $\mathcal{2}. \ ((q,q') \in E) \land (0 \in G(q,q')) \Rightarrow R(q,q',0) = \{0\}.$

Proposition 4.2 If $(q_0, 0) \in \text{Init}$ and $(\tau, q, x) \in \mathcal{H}_{(q_0, 0)}$ then x(t) = 0 for all $t \in \tau$.

- If the continuous part of the state starts on the equilibrium point, it stays there forever.
- One would like to characterize the notion that if the continuous state starts close to the equilibrium point it stays close, or even converges to it.
- Use the definitions of Lyapunov for this purpose.

Stability concepts

Definition 4.3 (Stable Equilibrium) Let $x = 0 \in \mathbb{R}^n$ be an equilibrium point of H. x = 0 is stable if for all $\epsilon > 0$ there exists $\delta > 0$ such that for all $(\tau, q, x) \in \mathcal{H}_{(q_0, x_0)}$ with $||x_0|| < \delta$, $||x(t)|| < \epsilon$ for all $t \in \tau$.

Definition 4.4 (Asymptotically Stable Equilibrium) Let $x = 0 \in \mathbb{R}^n$ be an equilibrium point of H. x = 0 is asymptotically stable if it is stable and there exists $\delta > 0$ such that for all $(\tau, q, x) \in \mathcal{H}^{\infty}_{(q_0, x_0)}$ with $||x_0|| < \delta$, $\lim_{t\to\tau_{\infty}} x(t) = 0$ where $\tau_{\infty} = \sum_{i} (\tau'_i - \tau_i)$.

Stability analysis

Theorem 4.9 Consider a hybrid automaton H with x = 0 as an equilibrium point, $|\mathbf{Q}| < \infty$, and $R(q, q', x) = \{x\}$. Consider an open set $D \subseteq \mathbf{X}$ with $0 \in D$ and a function $V : \mathbf{Q} \times D \to \mathbb{R}$ continuously differentiable in x such that for all $q \in \mathbf{Q}$:

1. V(q,0) = 0,

2.
$$V(q, x) > 0$$
 for all $x \in D \setminus \{0\}$,

3.
$$\frac{\partial V}{\partial x}(q, x) f(q, x) \le 0$$
 for all $x \in D$.

If for all $(\tau, q, x) \in \mathcal{H}$ and all $\hat{q} \in \mathbf{Q}$ the sequence $\{V(q(\tau_i), x(\tau_i)) : q(\tau_i) = \hat{q}\}$ is non increasing, then x = 0 is a stable equilibrium of H.

Stability analysis

Corollary 4.11 Consider a hybrid automaton H with x = 0 an equilibrium point, $|\mathbf{Q}| < \infty$, and $R(q, q', x) = \{x\}$. Consider an open set $D \subseteq \mathbf{X}$ with $0 \in D$ and assume there exists a function $V : D \to \mathbb{R}$ continuously differentiable in x such that:

1. V(0) = 0,

2.
$$V(x) > 0$$
 for all $x \in D \setminus \{0\}$,

3.
$$\frac{\partial V}{\partial x}(x)f(q,x) \leq 0$$
 for all $q \in \mathbf{Q}$ and all $x \in D$.

Then x = 0 is a stable equilibrium of H

Proof: Define $\hat{V} : \mathbf{Q} \times \mathbf{X} \to \mathbb{R}$ by $\hat{V}(q, x) = V(x)$ for all $q \in \mathbf{Q}, x \in \mathbf{X}$ and apply Theorem 1.

Stability analysis

Corollary 4.12 Consider a hybrid automaton H with x = 0 an equilibrium point, $|\mathbf{Q}| < \infty$, and assume R(q, q', x) is non-expanding. Consider an open set $D \subseteq \mathbf{X}$ with $0 \in D$ and a function $V : \mathbf{Q} \times D \rightarrow \mathbb{R}$ continuously differentiable in x such that for all $q \in \mathbf{Q}$:

1. V(q,0) = 0,

2.
$$V(q, x) > 0$$
 for all $x \in D \setminus \{0\}$,

3.
$$\frac{\partial V}{\partial x}(q, x) f(q, x) \le 0$$
 for all $x \in D$.

If for all $(\tau, q, x) \in \mathcal{H}$ and all $\hat{q} \in \mathbf{Q}$ the sequence $\{V(q(\tau_i), x(\tau_i)) : q(\tau_i) = \hat{q}\}$ is non increasing, then x = 0 is a stable equilibrium of H

Theorem 4.13 Consider a hybrid automaton H with $|\mathbf{Q}| < \infty$. Consider an open set $D \subseteq \mathbf{X}$ with $0 \in D$ and a function $V : \mathbf{Q} \times D \to \mathbb{R}$ continuous in x with V(q, 0) = 0 and V(q, x) > 0 for all $x \in D \setminus \{0\}$. Assume that for all $(\tau, q, x) \in \mathcal{H}$ the sequence $\{V(q(\tau_i), x(\tau_i))\}$ is non increasing and that there exists a continuous function $g : \mathbb{R}^+ \to \mathbb{R}^+$ with g(0) = 0, such that for all $t \in [\tau_i, \tau'_i]$, $V(q(t), x(t)) \leq g((V(q(\tau_i), x(\tau_i)))$. Then x = 0 is a stable equilibrium of H