Lecture 4

Review (time sets)

Review (Hybrid trajectory - (τ, q, x))

A hybrid trajectory over a set of variables $Q \times X$ is a triple (τ, q, x) consisting of a hybrid time set $\tau = \{I_i\}_{i=0}^N$ and two sequences of functions $q = \{q_i(\cdot)\}_{i=0}^N$ and $x = \{x_i(\cdot)\}_{i=0}^N$ with $q_i(\cdot) : I_i \to Q$ and $x_i(\cdot) : I_i \to \mathbb{R}^n$.

Review (Hybrid Execution)

• Initial condition: $(q_0(0), x_0(0)) \in Init.$

Review (prefix)

$$\tau \sqsubseteq \hat{\tau} \text{ and } \tau \sqsubseteq \tilde{\tau}.$$

A way to define what time set is "shorter"

Review (classification)

Finite, if τ is a finite sequence and the last interval in τ is closed.

Infinite, if τ is an infinite sequence, or if the sum of the time intervals in τ is infinite, i.e.

$$\sum_{i=0}^{N} (\tau_i' - \tau_i) = \infty.$$

Zeno, if it is infinite but $\sum_{i=0}^{\infty} (\tau_i' - \tau_i) < \infty$.

Maximal if it is not a strict prefix of any other execution of H.

Review (classification)

maximal: if it is not a strict prefix of any other execution of H infinite execution \rightarrow maximal execution

Today

- Lemma 1 (Non-blocking)
- Lemma 2 (Deterministic)
- Local existence of solutions + uniqueness
- Next class: Stability of switched systems

blocking + non-determinstic

