
Lecture 4

 1



Lecture Notes on Hybrid Systems, c⃝ J. Lygeros, 2004 24

0

1

2

3

i

tτ0 τ ′
0

τ1 τ ′
1

τ2 = τ ′
2

τ3 τ ′
3

t1 t2

t3 t4

t5

t6

Figure 3.8: A hybrid time set τ = {[τi, τ ′
i ]}3

i=0.

An example of a hybrid time set is given in Figure 3.8. Notice that the right endpoint, τ ′
i , of the

interval Ii coincides with the left endpoint, τi+1 of the interval Ii+1 (c.f. the time instants labelled
t2 and t3 in Figure 3.8). The interpretation is that these are the times at which discrete transitions
of the hybrid system take place. τ ′

i corresponds to the time instant just before a discrete transition,
whereas τi+1 corresponds to the time instant just after the discrete transition. Discrete transitions
are assumed to be instantaneous, therefore τ ′

i = τi+1. The advantage of this convention is that it
allows one to model situations where multiple discrete transitions take place one after the other
at the same time instant, in which case τ ′

i−1 = τi = τ ′
i = τi+1 (c.f. the interval I2 = [τ2, τ2]′ in

Figure 3.8).

Despite its somewhat complicated nature, a hybrid time set, τ , is a rather well behaved mathematical
object. For example, there is a natural way in which the elements of the hybrid time set can be
ordered. For t1 ∈ [τi, τ ′

i ] ∈ τ and t2 ∈ [τj , τ ′
j ] ∈ τ we say that t1 precedes t2 (denoted by t1 ≺ t2) if

t1 < t2 (i.e. if the real number t1 is less that the real number t2) or if i < j (i.e. if t1 belongs to
an earlier interval than t2). In Figure 3.8, we have t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t6. In general, given
any two distinct time instants, t1 and t2, belonging to some τ we have that either t1 ≺ t2 or t2 ≺ t2
(c.f. given any two distinct real numbers x and y, either x < y or y < x). Using mathematical
terminology, one would say that each hybrid time set τ is linearly ordered by the relation ≺.

Given two hybrid time sets τ and τ̂ there is also a natural way to define if one is “shorter” than the
other (τ is called a prefix of τ̂ if it is “shorter”). More formally, we say that τ = {Ii}N

i=0 is a prefix of
τ̂ = {Îi}M

i=0 (and write τ ⊑ τ̂ ) if either they are identical, or τ is a finite sequence, N ≤ M (notice
that M can be infinite), Ii = Îi for all i = 0, . . . , N − 1, and IN ⊆ ÎN . We say that τ is a strict
prefix of τ̂ (and write τ ! τ̂ ) if τ ⊑ τ̂ and τ ≠ τ̂ . In Figure 3.9, τ is a strict prefix of both τ̂ and τ̃ ,
but τ̂ is not a prefix of τ̃ and τ̃ is not a prefix of τ̂ . Notice that given τ and τ̂ we may have neither
τ̂ ⊑ τ nor τ ⊑ τ̂ (c.f. given two sets of real numbers A ⊆ R and B ⊆ R it is possible to have neither
A ⊆ B nor B ⊆ A). Using mathematical terminology, one would say that the set of all hybrid time
sets is partially ordered by the relation ⊑.

Hybrid time sets will be used to define the time horizon over which the states of hybrid systems
evolve. What does it mean for the state to “evolve” over a hybrid time set? For continuous systems
with state x ∈ Rn such an evolution was a function, x(·) : [0, T ] → Rn, mapping a time interval [0, T ]
to the set Rn where the state lives (see Chapter 2). For discrete systems (like the manufacturing
machine example of Chapter 1) whose state takes values in a finite set q ∈ {q1, . . . , qn} such an
evolution was a sequence of states. For hybrid systems, where the state has both a continuous
component x ∈ Rn and a discrete component q ∈ {q1, . . . , qn} we need to come up with a mixture
of these two notions.

 2

Review (time sets)



Review (Hybrid trajectory - (τ, q, x))

 3

A hybrid trajectory over a set of variables Q⇥X is a triple (⌧, q, x) consisting
of a hybrid time set ⌧ = {Ii}Ni=0 and two sequences of functions q = {qi(·)}Ni=0

and x = {xi(·)}Ni=0 with qi(·) : Ii ! Q and xi(·) : Ii ! Rn.



Review (Hybrid Execution)

Lecture Notes on Hybrid Systems, c⃝ J. Lygeros, 2004 25

0

1

0

1

0

1

1

2

1

2

1

2

i i i

τ τ̂τ̃

Figure 3.9: τ ! τ̂ and τ ! τ̃ .

Definition 3.3 (Hybrid Trajectory) A hybrid trajectory is a triple (τ, q, x) consisting of a hybrid
time set τ = {Ii}N

0 and two sequences of functions q = {qi(·)}N
0 and x = {xi(·)}N

0 with qi(·) : Ii → Q
and x(·) : Ii → Rn.

An execution of an autonomous hybrid automaton is a hybrid trajectory, (τ, q, x) of its state variables.
The elements listed in Definition 3.1 impose restrictions on the types of hybrid trajectories that the
hybrid automaton finds “acceptable”.

Definition 3.4 (Execution) An execution of a hybrid automaton H is a hybrid trajectory, (τ, q, x),
which satisfies the following conditions:

• Initial condition: (q0(0), x0(0)) ∈ Init.

• Discrete evolution: for all i, (qi(τ ′
i ), qi+1(τi+1)) ∈ E, xi(τ ′

i) ∈ G(qi(τ ′
i), qi+1(τi+1)), and

xi+1(τi+1) ∈ R(qi(τ ′
i ), qi+1(τi+1), xi(τ ′

i)).

• Continuous evolution: for all i,

1. qi(·) : Ii → Q is constant over t ∈ Ii, i.e. qi(t) = qi(τi) for all t ∈ Ii;

2. xi(·) : Ii → X is the solution to the differential equation

dxi

dt
= f(qi(t), xi(t))

over Ii starting at xi(τi); and,

3. for all t ∈ [τi, τ ′
i), xi(t) ∈ Dom(qi(t)).

Definition 3.4 specifies which of the hybrid trajectories are executions of H and which are not by
imposing a number of restrictions. The first restriction dictates that the executions should start at an
acceptable initial state in Init. For simplicity, we will use (q0, x0) = (q0(τ0), x0(τ0)) ∈ Init to denote
the initial state of an execution (τ, q, x). As for continuous systems, we can assume that τ0 = 0
without loss of generality. The second restriction determines when discrete transitions can take place
and what the state after discrete transitions can be. The requirements relate the state before the
discrete transition (qi(τ ′

i ), xi(τ ′
i)) to the state after the discrete transition (qi+1(τi+1), xi+1(τi+1)):

they should be such that (qi(τ ′
i), qi+1(τi+1)) is an edge of the graph, xi(τ ′

i ) belongs to the guard of
this edge and xi+1(τi+1) belongs the the reset map of this edge. In this context, it is convenient to
think of the guard G(e) as enabling a discrete transition e ∈ E: the execution may take a discrete
transition e ∈ E from a state x as long as x ∈ G(e). The third restriction determines what happens
along continuous evolution, and when continuous evolution must give way to a discrete transition.
The first part dictates that along continuous evolution the discrete state remains constant. The
second part requires that along continuous evolution the continuous state flows according to the
differential equation ẋ = f(q, x). Notice that the differential equation depends on the discrete state
we are currently in (which is constant along continuous evolution). The third part requires that

 4

Lecture Notes on Hybrid Systems, c⃝ J. Lygeros, 2004 24

0

1

2

3

i

tτ0 τ ′
0

τ1 τ ′
1

τ2 = τ ′
2

τ3 τ ′
3

t1 t2

t3 t4

t5

t6

Figure 3.8: A hybrid time set τ = {[τi, τ ′
i ]}3

i=0.

An example of a hybrid time set is given in Figure 3.8. Notice that the right endpoint, τ ′
i , of the

interval Ii coincides with the left endpoint, τi+1 of the interval Ii+1 (c.f. the time instants labelled
t2 and t3 in Figure 3.8). The interpretation is that these are the times at which discrete transitions
of the hybrid system take place. τ ′

i corresponds to the time instant just before a discrete transition,
whereas τi+1 corresponds to the time instant just after the discrete transition. Discrete transitions
are assumed to be instantaneous, therefore τ ′

i = τi+1. The advantage of this convention is that it
allows one to model situations where multiple discrete transitions take place one after the other
at the same time instant, in which case τ ′

i−1 = τi = τ ′
i = τi+1 (c.f. the interval I2 = [τ2, τ2]′ in

Figure 3.8).

Despite its somewhat complicated nature, a hybrid time set, τ , is a rather well behaved mathematical
object. For example, there is a natural way in which the elements of the hybrid time set can be
ordered. For t1 ∈ [τi, τ ′

i ] ∈ τ and t2 ∈ [τj , τ ′
j ] ∈ τ we say that t1 precedes t2 (denoted by t1 ≺ t2) if

t1 < t2 (i.e. if the real number t1 is less that the real number t2) or if i < j (i.e. if t1 belongs to
an earlier interval than t2). In Figure 3.8, we have t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t6. In general, given
any two distinct time instants, t1 and t2, belonging to some τ we have that either t1 ≺ t2 or t2 ≺ t2
(c.f. given any two distinct real numbers x and y, either x < y or y < x). Using mathematical
terminology, one would say that each hybrid time set τ is linearly ordered by the relation ≺.

Given two hybrid time sets τ and τ̂ there is also a natural way to define if one is “shorter” than the
other (τ is called a prefix of τ̂ if it is “shorter”). More formally, we say that τ = {Ii}N

i=0 is a prefix of
τ̂ = {Îi}M

i=0 (and write τ ⊑ τ̂ ) if either they are identical, or τ is a finite sequence, N ≤ M (notice
that M can be infinite), Ii = Îi for all i = 0, . . . , N − 1, and IN ⊆ ÎN . We say that τ is a strict
prefix of τ̂ (and write τ ! τ̂ ) if τ ⊑ τ̂ and τ ≠ τ̂ . In Figure 3.9, τ is a strict prefix of both τ̂ and τ̃ ,
but τ̂ is not a prefix of τ̃ and τ̃ is not a prefix of τ̂ . Notice that given τ and τ̂ we may have neither
τ̂ ⊑ τ nor τ ⊑ τ̂ (c.f. given two sets of real numbers A ⊆ R and B ⊆ R it is possible to have neither
A ⊆ B nor B ⊆ A). Using mathematical terminology, one would say that the set of all hybrid time
sets is partially ordered by the relation ⊑.

Hybrid time sets will be used to define the time horizon over which the states of hybrid systems
evolve. What does it mean for the state to “evolve” over a hybrid time set? For continuous systems
with state x ∈ Rn such an evolution was a function, x(·) : [0, T ] → Rn, mapping a time interval [0, T ]
to the set Rn where the state lives (see Chapter 2). For discrete systems (like the manufacturing
machine example of Chapter 1) whose state takes values in a finite set q ∈ {q1, . . . , qn} such an
evolution was a sequence of states. For hybrid systems, where the state has both a continuous
component x ∈ Rn and a discrete component q ∈ {q1, . . . , qn} we need to come up with a mixture
of these two notions.



Lecture Notes on Hybrid Systems, c⃝ J. Lygeros, 2004 25

0

1

0

1

0

1

1

2

1

2

1

2

i i i

τ τ̂τ̃

Figure 3.9: τ ! τ̂ and τ ! τ̃ .

Definition 3.3 (Hybrid Trajectory) A hybrid trajectory is a triple (τ, q, x) consisting of a hybrid
time set τ = {Ii}N

0 and two sequences of functions q = {qi(·)}N
0 and x = {xi(·)}N

0 with qi(·) : Ii → Q
and x(·) : Ii → Rn.

An execution of an autonomous hybrid automaton is a hybrid trajectory, (τ, q, x) of its state variables.
The elements listed in Definition 3.1 impose restrictions on the types of hybrid trajectories that the
hybrid automaton finds “acceptable”.

Definition 3.4 (Execution) An execution of a hybrid automaton H is a hybrid trajectory, (τ, q, x),
which satisfies the following conditions:

• Initial condition: (q0(0), x0(0)) ∈ Init.

• Discrete evolution: for all i, (qi(τ ′
i ), qi+1(τi+1)) ∈ E, xi(τ ′

i) ∈ G(qi(τ ′
i), qi+1(τi+1)), and

xi+1(τi+1) ∈ R(qi(τ ′
i ), qi+1(τi+1), xi(τ ′

i)).

• Continuous evolution: for all i,

1. qi(·) : Ii → Q is constant over t ∈ Ii, i.e. qi(t) = qi(τi) for all t ∈ Ii;

2. xi(·) : Ii → X is the solution to the differential equation

dxi

dt
= f(qi(t), xi(t))

over Ii starting at xi(τi); and,

3. for all t ∈ [τi, τ ′
i), xi(t) ∈ Dom(qi(t)).

Definition 3.4 specifies which of the hybrid trajectories are executions of H and which are not by
imposing a number of restrictions. The first restriction dictates that the executions should start at an
acceptable initial state in Init. For simplicity, we will use (q0, x0) = (q0(τ0), x0(τ0)) ∈ Init to denote
the initial state of an execution (τ, q, x). As for continuous systems, we can assume that τ0 = 0
without loss of generality. The second restriction determines when discrete transitions can take place
and what the state after discrete transitions can be. The requirements relate the state before the
discrete transition (qi(τ ′

i ), xi(τ ′
i)) to the state after the discrete transition (qi+1(τi+1), xi+1(τi+1)):

they should be such that (qi(τ ′
i), qi+1(τi+1)) is an edge of the graph, xi(τ ′

i ) belongs to the guard of
this edge and xi+1(τi+1) belongs the the reset map of this edge. In this context, it is convenient to
think of the guard G(e) as enabling a discrete transition e ∈ E: the execution may take a discrete
transition e ∈ E from a state x as long as x ∈ G(e). The third restriction determines what happens
along continuous evolution, and when continuous evolution must give way to a discrete transition.
The first part dictates that along continuous evolution the discrete state remains constant. The
second part requires that along continuous evolution the continuous state flows according to the
differential equation ẋ = f(q, x). Notice that the differential equation depends on the discrete state
we are currently in (which is constant along continuous evolution). The third part requires that

Lecture Notes on Hybrid Systems, c⃝ J. Lygeros, 2004 25

0

1

0

1

0

1

1

2

1

2

1

2

i i i

τ τ̂τ̃

Figure 3.9: τ ! τ̂ and τ ! τ̃ .

Definition 3.3 (Hybrid Trajectory) A hybrid trajectory is a triple (τ, q, x) consisting of a hybrid
time set τ = {Ii}N

0 and two sequences of functions q = {qi(·)}N
0 and x = {xi(·)}N

0 with qi(·) : Ii → Q
and x(·) : Ii → Rn.

An execution of an autonomous hybrid automaton is a hybrid trajectory, (τ, q, x) of its state variables.
The elements listed in Definition 3.1 impose restrictions on the types of hybrid trajectories that the
hybrid automaton finds “acceptable”.

Definition 3.4 (Execution) An execution of a hybrid automaton H is a hybrid trajectory, (τ, q, x),
which satisfies the following conditions:

• Initial condition: (q0(0), x0(0)) ∈ Init.

• Discrete evolution: for all i, (qi(τ ′
i ), qi+1(τi+1)) ∈ E, xi(τ ′

i) ∈ G(qi(τ ′
i), qi+1(τi+1)), and

xi+1(τi+1) ∈ R(qi(τ ′
i ), qi+1(τi+1), xi(τ ′

i)).

• Continuous evolution: for all i,

1. qi(·) : Ii → Q is constant over t ∈ Ii, i.e. qi(t) = qi(τi) for all t ∈ Ii;

2. xi(·) : Ii → X is the solution to the differential equation

dxi

dt
= f(qi(t), xi(t))

over Ii starting at xi(τi); and,

3. for all t ∈ [τi, τ ′
i), xi(t) ∈ Dom(qi(t)).

Definition 3.4 specifies which of the hybrid trajectories are executions of H and which are not by
imposing a number of restrictions. The first restriction dictates that the executions should start at an
acceptable initial state in Init. For simplicity, we will use (q0, x0) = (q0(τ0), x0(τ0)) ∈ Init to denote
the initial state of an execution (τ, q, x). As for continuous systems, we can assume that τ0 = 0
without loss of generality. The second restriction determines when discrete transitions can take place
and what the state after discrete transitions can be. The requirements relate the state before the
discrete transition (qi(τ ′

i ), xi(τ ′
i)) to the state after the discrete transition (qi+1(τi+1), xi+1(τi+1)):

they should be such that (qi(τ ′
i), qi+1(τi+1)) is an edge of the graph, xi(τ ′

i ) belongs to the guard of
this edge and xi+1(τi+1) belongs the the reset map of this edge. In this context, it is convenient to
think of the guard G(e) as enabling a discrete transition e ∈ E: the execution may take a discrete
transition e ∈ E from a state x as long as x ∈ G(e). The third restriction determines what happens
along continuous evolution, and when continuous evolution must give way to a discrete transition.
The first part dictates that along continuous evolution the discrete state remains constant. The
second part requires that along continuous evolution the continuous state flows according to the
differential equation ẋ = f(q, x). Notice that the differential equation depends on the discrete state
we are currently in (which is constant along continuous evolution). The third part requires that

 5

Review (prefix)

A way to define what time set is “shorter”



Review (classification)

 6

Lecture Notes on Hybrid Systems, c⃝ J. Lygeros, 2004 26

0 0.5 1 1.5 2 2.5 3 3.5
!0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5
0.5

1.5

2.5

x2 

x1 

q1 

q2 

Figure 3.10: Example of an execution of the water tank hybrid automaton.

along continuous evolution the state must remain in the domain, Dom(q), of the discrete state. In
this context, it is convenient to think of Dom(q) as forcing discrete transitions: the execution must
take a transition if the state is about to leave the domain.

Example (Water Tank (cont.)) Figure 3.10 shows an execution of the water tank automaton.
The hybrid time set τ of the execution consists of three intervals, τ = {[0, 2], [2, 3], [3, 3.5]}. The
evolution of the discrete state is shown in the upper plot, and the evolution of the continuous state
is shown in the lower plot. The values chosen for the constants are r1 = r2 = 0, v1 = v2 = 1/2 and
w = 3/4. The initial state is q = q1, x1 = 0, x2 = 1.

A convenient interpretation is that the hybrid automaton accepts (as opposed to generates) execu-
tions. This perspective allows one to consider, for example, hybrid automata that accept multiple
executions for some initial states, a property that can prove very useful when modelling uncertain
system (as illustrated by the thermostat example of Chapter 1).

Definition 3.5 (Classification of executions) An execution (τ, q, x) is called:

• Finite, if τ is a finite sequence and the last interval in τ is closed.

• Infinite, if τ is an infinite sequence, or if the sum of the time intervals in τ is infinite, i.e.

N∑

i=0

(τ ′
i − τi) = ∞.

• Zeno, if it is infinite but
∑∞

i=0(τ
′
i − τi) < ∞.

• Maximal if it is not a strict prefix of any other execution of H.

Figure 3.11 shows examples of hybrid time sets of finite, infinite and Zeno executions.



 7

Review (classification)Lecture Notes on Hybrid Systems, c⃝ J. Lygeros, 2004 27

i

0

0 0 0

1 1 1

1

i i

0

22

1

2

1

0

i i i

τA τB τC

τD τE τF

Figure 3.11: τA finite, τC and τD infinite, τE and τF Zeno.

Exercise 3.3 Show that an execution is Zeno if and only if it takes an infinite number of discrete
transitions in a finite amount of time. Does an execution definer over the hybrid time set τB of
Figure 3.11 belong to any of the classes of Definition 3.5?

3.3 Bibliography and Further Reading

Hybrid systems arise naturally in a number of engineering applications. In addition to the applica-
tions mentioned above, the hybrid paradigm has also been used successfully to address problems in
air traffic control [95], automotive control [15], bioengineering [23], chemical process control [57, 33],
highway systems [99, 44] and manufacturing [83].

The formal definition of hybrid automata is based on a fairly standard class of autonomous hybrid
systems. The notation used here comes from [64, 47]. This class of systems has been studied
extensively in the literature in a number of variations, for a number of purposes, and by a number
of authors. Special cases of the class of systems considered here include switched systems [82],
complementarity systems [97], mixed logic dynamic systems [39], and piecewise linear systems [49]
(the autonomous versions of these, to be more precise). The hybrid automata considered here are a
special case of the hybrid automata of [5] and the impulse differential inclusions of [14] (discussed
in Chapter 7 of these notes), both of which allow differential inclusions to model the continuous
dynamics. They are a special case of the General Hybrid Dynamical Systems of [21], which allow
the continuous state to take values in manifolds (different ones for each discrete state). They are also
a special case of hybrid input/output automata of [68], which, among other things, allow infinite-
dimensional continuous state.

finite infinite

infinite infinite infinite
zeno zeno

maximal: if it is not a strict prefix of any other execution of H 
infinite execution ➞ maximal execution



Today 

 8

• Lemma 1 (Non-blocking) 

• Lemma 2 (Deterministic) 

• Local existence of solutions + uniqueness 

• Next class: Stability of switched systems



Lecture Notes on Hybrid Systems, c⃝ J. Lygeros, 2004 31

q q′
x ≤ −2

x ≤ −3

x :∈ (−∞, 0]

x :∈ (−∞, 0]

ẋ = 1

x ≤ 0

ẋ = −1

x ≤ 0

Figure 4.1: Examples of blocking and non-determinism.

How about if q = q1 and x2 = r2? If continuous evolution was to take place from this state, x2 would
immediately go below r2. This is because q = q1 implies that ẋ2 = −v2 < 0 (recall that v2 > 0).
This, however, would imply that the state would leave the domain Dom(q1), which is impossible
along continuous evolution. Therefore, continuous evolution is also impossible from states where
q = q1 and x2 = r2 (and, by a symmetric argument, states where q = q2 and x1 = r1). Overall,

Trans =
(
{q1}× {x ∈ R

2 | x2 ≤ r2}
)
∪

(
{q2}× {x ∈ R

2 | x1 ≤ r1}
)
.

4.3 Local Existence and Uniqueness

Next, we turn our attention to questions of existence of executions. We give some conditions under
which infinite executions exist for all initial states, and conditions under which these executions are
unique.

Definition 4.2 (Non-Blocking and Deterministic) A hybrid automaton H is called non-blocking
if for all initial states (q̂, x̂) ∈ Init there exists an infinite execution starting at (q̂, x̂). It is called
deterministic if for all initial states (q̂, x̂) ∈ Init there exists at most one maximal execution starting
at (q̂, x̂).

Roughly speaking, the non-blocking property implies that infinite executions exist for all initial
states, while the deterministic property implies that the infinite executions (if they exist) are unique.
As we have seen, continuous dynamical systems described by differential equations have both these
properties if the vector field f is assumed to be Lipschitz continuous (Theorem 2.1). In hybrid
systems, however, more things can go wrong.

Consider, for example, the hybrid automaton of Figure 4.1. Let (q̂, x̂) denote the initial state, and
notice that q̂ = q. If x̂ = −3, executions starting at (q̂, x̂) can either flow along the vector field ẋ = 1,
or jump back to q reseting x anywhere in (−∞, 0], or jump to q′ leaving x unchanged. If x̂ = −2
executions starting at (q̂, x̂) can either flow along the vector field, or jump to q′. If x̂ = −1 executions
stating at (q̂, x̂) can only flow along the vector field. Finally, if x̂ = 0 there are no executions starting
at (q̂, x̂), other than the trivial execution defined over [τ0, τ ′

0] with τ0 = τ ′
0. Therefore, the hybrid

automaton of Figure 4.1 accepts no infinite executions for some initial states and multiple infinite
executions for others.

Intuitively, a hybrid automaton is non-blocking if for all reachable states for which continuous
evolution is impossible a discrete transition is possible. This fact is stated more formally in the
following lemma.

Lemma 4.1 A hybrid automaton, H, is non-blocking if for all (q̂, x̂) ∈ Reach∩Trans, there exists
q̂′ ∈ Q such that (q̂, q̂′) ∈ E and x̂ ∈ G(q̂, q̂′). If H is deterministic, then it is non-blocking if and
only if this condition holds.

blocking + non-determinstic

 9


