Lecture 6

Review

Normal game form

 $P = \{1, \ldots, n\}$: set of players

 S_i : possible strategies for player i

 $s = \{s_1, \ldots, s_n\}$: (pure) strategy profile of the game

S: set of strategy profiles

 $\pi_i:S\mapsto\mathbb{R}$: payoff to player i when profile s is chosen by all players

Example

	P ₂	
	M	Д
Rr	0,0	1,-1
Rf	0.5,-0.5	0,0
Fr	-0.5,0.5	1,-1
Ff	0,0	0,0

$$S_1 = \{Rr, Rf, Fr, Ff\}$$

$$S_2 = \{M, P\}$$

$$s = \{Rr, M\}$$

$S_2 = \{M, P\}$		
$s = \{Rr, Mr\}$	1 }	
$\pi_1(s)=0$		
$\pi_2(s)=0$		

		P_2	
		<i>S</i> ₁₂	<i>S</i> ₂₂
	<i>S</i> ₁₁	0,0	1,-1
	<i>S</i> ₂₁	0.5,-0.5	0,0
1	<i>S</i> ₃₁	-0.5,0.5	1,-1
	<i>S</i> 41	0,0	0,0

Normal game form

 $P = \{1, \ldots, n\}$: set of players

 S_i : possible strategies for player i

 $s = \{s_1, \ldots, s_n\}$: (pure) strategy profile of the game

S: set of strategy profiles

 $\pi_i:S\mapsto\mathbb{R}$: payoff to player i when profile s is chosen by all players

 s_{1i}, \ldots, s_{ki} : pure strategies for player i

 $\sigma_i = p_{1i}s_{1i} + \ldots + p_{ki}s_{ki}$: mixed strategy for player i

 p_{ji} : weight of strategy s_{ji} on σ_i

 $\sigma = (\sigma_1, \ldots, \sigma_n)$: mixed strategy profile

Payoffs of mixed strategies

 s_{1i}, \ldots, s_{ki} : pure strategies for player i

 $\sigma_i = p_{1i}s_{1i} + \ldots + p_{ki}s_{ki}$: mixed strategy for player i

 p_{ji} : weight of strategy s_{ji} on σ_i

 $\sigma = (\sigma_1, \ldots, \sigma_n)$: mixed strategy profile

Payoff for player 1

$$\pi_1(\sigma) = \sum_{s_{j1} \in S_1} \sum_{s_{j2} \in S_2} \dots \sum_{s_{j2} \in S_2} p_{j1} p_{j2} \dots p_{jn} \pi_1(s_{j1}, s_{j2}, \dots, s_{jn})$$

Today

- The Fundamental Theorem of game theory
- How to find Nash equilibria
- Pareto and social optimality
- Weakly donated v. strictly dominated Strategies
- Dynamic games

The Penalty-Kick Games

Goalie

		left	right
Kicker	left	0.58, -0.58	0.95, -0.95
	right	0.93, -0.93	0.70, -0.70

- What makes the kicker indifferent between his two options?
- That the goalie moves left with probability 0.39
- What makes the goalie indifferent between his two options?
- That the kicker moves left with probability 0.42

Empirical study: goalies dive left a 0.42 fraction of the time

Other notions of optimality

Your partner

		presentation	exam
You	presentation	90, 90	86, 92
	exam	92, 86	88, 88

- A strategy profile is Pareto-optimal if there is no other choice of strategies in which all players receive payoffs at least as high, and at least one player receives a strictly higher payoff
- A strategy profile is a social welfare maximizer (or socially optimal) if it maximizes the sum of the players' payoffs.

Next class

- Evolutionary game theory
- Fitness as a result of interaction
- Evolutionarily stable strategies (ESS)

Then

Modeling network traffic using games