Lecture 5

Review

Card game

- P₁ takes the money if the card is red
- P₂ takes the money if the card is black

What is missing? Information state...

Perfect information

- P₁: 2 information states (4 choices R, F, r, f)
- P₂: 2 information states (4 choices M, P, m, p)

Imperfect information

- P₁: 2 information states (4 choices R, F, r, f)
- P₂: 1 information state (2 choices M, P)

Strategies v. actions

Action = move, choice, decision by players ≠ strategy

Strategy (P_1)

- Any rule for determining a move at every possible information state
- Maps information state into moves
- P_1 has 4 possible strategies: $s_1 \in \{Rr, Rf, Fr, Ff\}$

Strategy (P₂)

If we know the players' strategies, can we predict the outcome?

P_1 plays Rf and and P_2 plays M

• P₂: 1 information state (2 choices)

Expected payoff?

Expected payoffs

- Strategy profile: $s = (s_1, ..., s_n)$
- Take, $s = (s_1, s_2) = (Rf, M)$ (cards have equal probability)

$$\pi_1(s) = 2\frac{1}{2} + (-1)\frac{1}{2} = \frac{1}{2}$$
$$\pi_2(s) = (-2)\frac{1}{2} + 1\frac{1}{2} = -\frac{1}{2}$$

• Expected payoffs to each player from each pair of strategies:

game in normal form!

Underlying assumptions

- Maximize average grade (rationality)
- Partner has same exam and same payoffs
- Not able to contact your partner
- What would you do?

dominated strategy: some other strategy is better

strictly dominant strategy: better than all other alternatives

Other coordination games

Balanced coordination

		Your partner	
		Power Points	Keynote
You	Power Point	1, 1	0,0
	Keynote	0,0	1, 1

Unbalanced coordination

		Your partner		
		Power Points	Keynote	
You	Power Point	1, 1	0,0	
	Keynote	0,0	2, 2	

Battle of the sexes

Your partner

		•	
		Power Points	Keynote
You	Power Point	1,2	0,0
	Keynote	0,0	2, 1

A Three-Client Game

- If the two firms approach the same client, then the client will give half its business to each
- Firm 1 is too small to attract business on its own, so if it approaches one client while Firm 2 approaches a different one, then Firm 1 gets a payoff of 0
- If Firm 2 approaches client B or C on its own, it will get their full business. However, A is a larger client, and will only do business with the firms if both approach A.
- Because A is a larger client, doing business with it is worth 8 (and hence 4 to each rm if it's split), while doing business with B or C is worth 2 (and hence 1 to each firm if it's split).

Back to presentation-exam...

- Maximize average grade (rationality)
- Partner has same exam and same payoffs
- Not able to contact your partner
- What would you do?
- Nash: Best strategy, given your partner's decision

Your partner

		presentation	exam
You	presentation	90, 90 -	-86, 92 -
	exam	92, 86	88, 88

Nash is not necessarily the best outcome!

Today

- Formalize Mixed Strategies
- Formalize Nash Equilibrium
- The Fundamental Theorem of game theory
- How to find find Nash equilibria

Next class

- Pareto and social optimality
- Weakly donated v. strictly dominated Strategies
- Dynamic games

Then:

- Evolutionary game theory
- Fitness as a result of interaction
- Evolutionarily stable strategies

Then:

• Modeling network traffic using games