Lecture 5

Review

Card game

- P_{1} takes the money if the card is red
- P_{2} takes the money if the card is black

What is missing? Information state...

Perfect information

- $P_{1}: 2$ information states (4 choices - R, F, r, f)
- P_{2} : 2 information states (4 choices - M, P, m, p)

Imperfect information

- $P_{1}: 2$ information states (4 choices - R, F, r, f)
- P_{2} : 1 information state (2 choices - M, P)

Strategies v. actions

$$
\begin{aligned}
\text { Action } & =\text { move, choice, decision by players } \\
& \neq \text { strategy }
\end{aligned}
$$

Strategy $\left(P_{1}\right)$

- Any rule for determining a move at every possible information state
- Maps information state into moves
- P_{1} has 4 possible strategies: $s_{1} \in\{R r, R f, F r, F f\}$

Strategy $\left(\mathrm{P}_{2}\right)$

P_{2} has 4 possible strategies $s_{2} \in\{\mathrm{Mm}, \mathrm{Mp}, \mathrm{Pp}, \mathrm{Pm}\}$
(Perfect information)

P_{2} has 2 possible strategies
$s_{2} \in\{\mathrm{M}, \mathrm{P}\}$
(Imperfect information)

If we know the players' strategies, can we predict the outcome?

P_{1} plays $R f$ and and P_{2} plays M

- $P_{2}: 1$ information state (2 choices)

Expected payoff?

Expected payoffs

- Strategy profile: $s=\left(s_{1}, \ldots, s_{n}\right)$
- Take, $s=\left(s_{1}, s_{2}\right)=(R f, M)$ (cards have equal probability)

$$
\begin{aligned}
& \pi_{1}(s)=2 \frac{1}{2}+(-1) \frac{1}{2}=\frac{1}{2} \\
& \pi_{2}(s)=(-2) \frac{1}{2}+1 \frac{1}{2}=-\frac{1}{2}
\end{aligned}
$$

- Expected payoffs to each player from each pair of strategies:

game in normal form!

Underlying assumptions

- Maximize average grade (rationality)
- Partner has same exam and same payoffs
- Not able to contact your partner
- What would you do?
dominated strategy: some other strategy is better

\uparrow
strictly dominant strategy: better than all other alternatives

Other coordination games

Balanced coordination

	Your partner		
	Power Points	Keynote	
You	Power Point	1,1	0,0
	Keynote	0,0	1,1

Unbalanced coordination

Battle of the sexes

	Your partner	
	Power Points	Keynote
You	Power Point	1,2
0,0		
	Keynote	0,0
2,1		

A Three-Client Game

- If the two firms approach the same client, then the client will give half its business to each
- Firm 1 is too small to attract business on its own, so if it approaches one client while Firm 2 approaches a different one, then Firm 1 gets a payoff of 0
- If Firm 2 approaches client B or C on its own, it will get their full business. However, A is a larger client, and will only do business with the firms if both approach A.
- Because A is a larger client, doing business with it is worth 8 (and hence 4 to each rm if it's split), while doing business with B or C is worth 2 (and hence 1 to each firm if it's split).

Nash: best response given what the other firm does

No strictly dominant strategy No straggly dominated strategy

	Firm 2			
		A	B	C
Firm 1	4,4	0,2	0,2	
	A	0,0	1,1	0,2
	C	0,0	0,2	1,1

Back to presentation-exam...

- Maximize average grade (rationality)
- Partner has same exam and same payoffs
- Not able to contact your partner
- What would you do?
- Nash: Best strategy, given your partner's decision

Nash is not necessarily the best outcome!

Today

- Formalize Mixed Strategies
- Formalize Nash Equilibrium
- The Fundamental Theorem of game theory
- How to find find Nash equilibria

Next class

- Pareto and social optimality
- Weakly donated v. strictly dominated Strategies
- Dynamic games

Then:

- Evolutionary game theory
- Fitness as a result of interaction
- Evolutionarily stable strategies

Then:

- Modeling network traffic using games

