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Abstract— One of the aims of network formation models is to
explain salient properties of empirical networks based on simple
mechanisms for establishing links. Such mechanisms include
random attachment (a generic abstraction of how new incoming
nodes connect to a network), triadic closure (how the new
nodes establish transitive relationships), and network response
(how nodes react to new attachments). Our work analyzes
the combined effect of the three mechanisms on various local
and global network properties. In particular, we derive an
expression for the asymptotic behavior of the local reciprocity
coefficient as a function of the in-degree of a node. Furthermore,
we show that the dynamics of the global reciprocity and
the global clustering coefficients correspond to time-varying
linear systems. Finally, we identify conditions under which the
equilibria of both coefficients are asymptotically stable.

I. INTRODUCTION

Reciprocal relationships, established by the practice of
giving one thing and receiving back another, lie at the heart
of numerous interconnected systems in which users enjoy
mutual benefits (e.g., trust) based on a collaborative exchange
of information. Reciprocity, in its simplest form, represents
a potential feedback loop, where a target node responds to
an action, an event, or a process of a source node. Networks
with a high number of such loops define a class of directed
networks called reciprocal networks [1].

Recent research in the field of network theory has focused
on developing models that explain the structure of empirical
networks, including the formation of patterns found in mea-
sures of degree centralities (in- and out-degree distributions),
clustering (transitive relationships), community structures
(modularity), and assortative mixing (homophily) [2]–[4].
Understanding these properties represents a first step toward
designing estimation and control algorithms that take account
of emerging structures inherent to a class of networks.
The work in [4] illustrates, for example, how undirected
networks rely on connectivity patterns for their function, in
particular, how resilience levels depend on the underlying
degree distribution and clustering properties. Less attention
has been paid to the development of analytical frameworks
that help assess such relationships for reciprocal networks.

To help bridge this gap, this paper explores the coupled
dynamics of reciprocity and clustering in networks with
power law degree distributions. Our work is closely related
to the growth models introduced in [5] and [6], where
the authors propose different frameworks to evaluate how
reciprocal edges impact the equilibrium distributions of the
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degree of nodes. Simple mechanisms for establishing links
explain the emergence of empirical power law distributions
(e.g., in networks where nodes represent online articles and
hyperlinks connect one article with another). As in [5], [6],
we assume that the probability of establishing reciprocal
edges does not depend on the degree of nodes or any
other network measure; however, we focus on identifying
relationships in the outcome resulting from mechanisms of
triadic closure and reciprocity.

Conceptually, our work is also related to [7], where the
authors formalize a notion of robustness against link pertur-
bations. Their work introduces a metric on the space of all
weighted networks and shows that certain centrality measures
satisfy the condition of Lipschitz continuity, meaning that
any perturbation in the weight of a link leads to a difference
in centrality that is bounded. However, without developing
a formal time- or event-driven model, it is not possible
to evaluate whether small perturbations remain close to an
equilibrium state. In other words, whether a given centrality
measure is indeed stable (in the sense of Lypunov). Providing
such a framework remains in general an open challenge.

The main motivation behind our work is to study the
stability of equilibrium patterns in clustering and reciprocity.
We use the event-driven model in [8] that combines three
simple mechanisms to generate reciprocal networks with
varying degrees of clustering: Random attachmentdescribes
how a new node connects to a given network, triadic closure
establishes transitivity relationships, and network response
characterizes the way nodes react to new attachments. Our
aim is to identify conditions under which the dynamics
resulting from the interaction of these mechanisms can be
approximated as a set of difference equations. In particular,
we derive closed-loop expressions for the global reciprocity
and the global clustering coefficients, and show that both
coefficients are asymptotically stable.

II. PRELIMINARIES

Consider a ordered set of graphs G = {G(0),G(1), . . .}.
Each element G(t) = (H(t),A(t)) represents a network with
a set of nodes H(t) = {1, . . . , Nt} and a set of directed
edges A(t) = {(i, j) : i, j ! H (t)}. The pair (j, i) ! A (t)
indicates an edge from node j to node i, and ki(t) and
k̂i(t) represent the in- and out-degree of node i ! H (t) at
time t. The occurrence of an event at time t represents nodes
establishing new edges based on the following mechanisms.
M1 Random attachment:A new incoming node links to

m " 1, m ! Z+ , different nodes, selected according
to a uniform random distribution over H(t # 1).
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M2 Triadic closure:For every edge that a new node estab-
lishes during random attachment, it tries to establish
an additional edge within the new neighborhood. In
particular, if node j /! H (t # 1) connects to some node
j

0 ! H (t # 1), it connects to an outgoing neighbor of
node j

0 with probability 0 < ⇡f $ 1.
M3 Network response:There are two ways nodes respond

to the attachment of a new node. The first approach
is based on reciprocity: Each of the m randomly se-
lected nodes establishes an edge to the new node with
probability 0 $ ⇡r $ 1. The second approach shows
no preference for establishing reciprocal edges: A set
of n " 0 randomly selected nodes connect to the new
node.

Let ! T = {0, 1, 2, . . .} be a set of time indices. Consider
the following assumptions.

A1 The initial network: The network G(0) is weakly con-
nected and has more than 2m nodes, each with at least
one outgoing neighbor.

A2 The event-time incidence rate: Mechanisms M1-M3 are
triggered every index t ! T .

Under assumptions A1-A2, it can be shown that as t % &
the in- and out-degree distributions obey an extended power
law and an exponential law (see Theorems 1 and 2 in [8],
respectively). Here we focus on characterizing the reciprocity
and clustering properties of G(t). Consider the following
definitions.

DeÞnition 1 (path of length two):A path of length twois
an ordered sequence pij(t) = (x0 = i, x1, x2 = j) such that
(xi, xi+1 ) ! A (t) for i = 0, 1.

In other words, a path pij of length two is a sequence of
three nodes that connects node i to node j.

DeÞnition 2 (triad): Consider three nodes i, j, j

0 ! H (t)
such that (j0, j) ! A (t). A subgraph is said to be a triadic
closureor triad involving node j

0 if

a) (j0, i) ! A (t) and either (j, i) or (i, j) ! A (t); or
b) (i, j0) ! A (t) and (i, j) ! A (t).
According to Definition 2, a triad represents any possible

configuration of three edges between three nodes, except
closed cycles ({(j0, i), pj0i}, {(j0, j), pj0j} , and {(i, j), pij}
represent triads ). Note also that because a triad is the
combination of a direct link and a path of length two, it
represents two alternative ways for a source node to reach a
target node. That is, a triad does not include an edge between
the target node and the source node (e.g., how a target node
may respond to a process of a source node).

DeÞnition 3 (reciprocal cycle):A reciprocal cycleinvolv-
ing node i is a path of length two that starts and ends at node
i, that is, pii(t) = (i, j, i) for some j ! H (t).

Note that a reciprocal cycle groups a link and its reciprocal
segment and represents the lowest-order cycle in a directed
network, i.e., the simplest path configuration except for self-
loops. Edges that are part of reciprocal cycles capture either
a stimulus of a source node or a response by a target node,
and are called reciprocal edges.

III. LOCAL AND GLOBAL RECIPROCITY COEFFICIENTS

The reciprocity coefficient of a node describes the ratio
between the number of reciprocal edges involving that node
and its total degree. Let r(k) represent the average local reci-
procity coefficient of nodes with in-degree k. The following
theorem presents sufficient conditions for the convergence of
the local reciprocity coefficient.

Theorem 1 (local reciprocity):Suppose that assumptions
A1-A2 hold. Moreover, suppose the reciprocal approach for
mechanism M3 satisfies ⇡r > 0. The asymptotic behavior of
the local reciprocity coefficient for nodes with in-degree k

approaches

r

⇤(k) =
2m⇡r (1 + g(k))

k +m(⇡f + 1) + (n+m⇡r)g(k)

where

g(k) = (↵ # 1) ln

✓
k⇡f +m(1 + ⇡f + ⇡r) + n

(⇡f + 1)(m(1 + ⇡r) + n)

◆

and ↵ = 2 + 1
⇡f

+ ⇡r
⇡f

+ n
m⇡f

.

Proof: To capture the average local reciprocity coeffi-
cient of nodes with in-degree k, consider node i (selected
uniformly at random) with in-degree ki(t) = k. Let ri(t)
represent the number of reciprocal edges involving node i at
time t. First, we will characterize the rate of change of ri(t).
According to mechanisms M1 and M3, and assumption A2,
at time t = tj '= ti, node j /! H (t # 1) connects to m

different nodes; and each of these nodes may establish a
reciprocal connection to node j. The probability that node
j attaches to node i ! H (t # 1) at time t, and that node i

establishes a reciprocal edge is given by 2m⇡r
Nt�1

. The overall
rate of change of ri(t) is given by

dri(t)

dt

=
2m⇡r
Nt�1

(1)

with boundary condition ri(ti) = 2m⇡r, which corresponds
to the expected number of reciprocal edges established at
time ti (i.e., when node i joined the network). The solution
to eq. (1) is

ri(t) = 2m⇡r

✓
1 + ln

✓
Nt�1

Nti�1

◆◆
(2)

Moreover, it can be shown that the in-degree of node i at
time t equals

ki(t) = (m(1+⇡r)+n)

✓
Nt�1

Nti�1

◆ 1
↵�1

✓
1 +

1

⇡f

◆
# (↵# 1)m

where ↵ =
⇣
2 + 1

⇡f
+ ⇡r

⇡f
+ n

m⇡f

⌘
(see the proof of The-

orem 1 in [8] for details). Rearranging the above equation,
we get

Nt�1

Nti�1
=

✓
ki(t)⇡f +m(1 + ⇡f + ⇡r) + n

(⇡f + 1)(m(1 + ⇡r) + n)

◆↵�1

(3)

Replacing eq. (3) in eq. (2), the number of reciprocal edges
involving node i in terms of the in-degree of node i is given
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by
ri(t) = 2m⇡r (1 + g(ki(t))) (4)

where

g(ki(t)) = (↵ # 1) ln

✓
ki(t)⇡f +m(1 + ⇡f + ⇡r) + n

(⇡f + 1)(m(1 + ⇡r) + n)

◆

Moreover, using Lemma 1 in [8], if t is sufficiently large,
then the out-degree of node i can be described in terms of
its in-degree as

k̂i(t) = m(1 + ⇡f ) + (n+m⇡r)g(ki(t))

For a fixed time index t, the total degree of node i is
ki + m(1 + ⇡f ) + (n +m⇡r)g(ki). Dividing the expected
number of reciprocal edges (eq. (4)) over the total degree of
node i, we know that the asymptotic behavior of the average
local reciprocal coefficient for nodes with in-degree ki = k

satisfies

r

⇤(k) =
2m⇡r(1 + g(k))

k +m(1 + ⇡f ) + (n+m⇡r)g(k)
(5)

Theorem 1 implies that the local reciprocity coefficients of
the networks in G do neither vanish nor depend on the initial
network G(0), which also holds for the global reciprocity
coefficient. The global reciprocity coefficient is defined as the
ratio between the number of reciprocal edges and the total
number of edges across the entire network. The following
theorem characterizes its asymptotic behavior.

Theorem 2 (global reciprocity):Suppose that assump-
tions A1-A2 hold. Moreover, suppose the reciprocal ap-
proach for mechanism M3 satisfies ⇡r > 0. The global
reciprocity coefficient rg(t) converges to

R

⇤ =
2m⇡r

m(1 + ⇡f + ⇡r) + n

Proof: We know that when a node attaches to the
network, the number of reciprocal edges that are formed
is 2m⇡r. Moreover, the combination of the random approach
for mechanism M3 and mechanisms M1 or M2 increases the
expected number of reciprocal edges at time t by 2mn

Nt�1
+

2m⇡fn
Nt�1

. So, the total number of reciprocal edges across the
network increases every time instant by

2m

✓
⇡r +

n(1 + ⇡f )

Nt�1

◆
(6)

Let Lr
0 represent the number of reciprocal edges and L0 the

total number of edges of the initial network. The average
number of reciprocal edges at time t is

L

r
0 + 2m⇡rt+ 2mn(1 + ⇡f )

t�1X

⌧=1

1

N⌧
(7)

Moreover, when a node attaches to the network, mechanisms
M1-M3 establish on average m+m⇡f+m⇡r+n new edges.
The average number of total edges in the network (including
reciprocal edges) at time t is

L0 + (m(1 + ⇡f + ⇡r) + n)t (8)

The global reciprocity coefficient of the network is given by
the ratio of eq. (7) to eq. (8), which equals

R(t) =
L

r
0 + 2m⇡rt+ 2mn(1 + ⇡f )

Pt�1
⌧=1

1
N⌧

L0 + (m(1 + ⇡f + ⇡r) + n)t
(9)

For sufficiently large values of t, L0 ( (m(1+⇡f+⇡r)+n)t.
Moreover, due to assumption A2, if a new node attaches to
the network every time index t, the number of nodes at time
t # 1 is Nt�1 = N0 + t # 1 where N0 indicates the number
of nodes of the initial network. As t % & the first and
third term in the numerator of eq. (9) tend to zero and R(t)
converges to

R

⇤ =
2m⇡r

m(1 + ⇡f + ⇡r) + n

(10)

Theorem 2 shows that the asymptotic behavior of the
global reciprocity coefficient does not depend of the initial
conditions of the network.

IV. GLOBAL CLUSTERING COEFFICIENT

To further investigate the opposite effects of triad for-
mation and the reciprocal approach consider the following
measure of triadic closure. The global clustering coefficient
is defined as the ratio between the total number of triads
across the entire network and the the total number of paths
of length two that could potentially lead to a triad. The
following theorem describes the asymptotic behavior of the
global clustering coefficient.

Theorem 3 (global clustering):Suppose that assumptions
A1-A2 hold. The global clustering coefficient C(t) converges
to

C

⇤ =
m⇡f (1 + ⇡r)

(m(1 + ⇡f + ⇡r) + n)2 +m(1 + ⇡f )(n+m⇡r)

Proof: Note that when a node attaches to the network
(based on mechanism M1), it forms, on average, m⇡f

triads due to mechanism M2, and m⇡f⇡r triads due to
the reciprocal approach for mechanism M3, for a total of
m⇡f +m⇡f⇡r every time t. Moreover, let

a1 = m(1 + ⇡f + ⇡r) + n (11)

denote the expected total number of edges (incoming and
outgoing) formed when a new node attaches to the network.
Note that m edges are formed according to the random
attachment process, m⇡f edges according to triadic closure,
and m⇡r+n edges according to both approaches for network
response. Note also that additional triads may be formed
due to edges established in the following ways by the
mechanisms. The probability of forming a triad with edges
established by mechanism M1, combined with the reciprocal
approach for mechanism M3, is 1

Nt�1
m(m # 1)a1(2 + ⇡r).

Similarly, the probability of forming a triad with two edges
established by mechanism M2 is 1

Nt�1
m⇡f ((m # 1)⇡f )2a1.

The probability that an edge established by the random
approach for mechanism M3 combined an edge established
by one of the mechanisms M1-M3 (i.e., random attachment,

778



triadic closure, or the random approach for M3) increases
the number of triads by

1

Nt�1
nma1(1 + ⇡r) +

1

Nt�1
nm⇡fa1 +

1

Nt�1
n(n # 1)2a1

On average the number of triads formed when a new node
attaches to the network increases by

m⇡f (1 + ⇡r) +
1

Nt�1
a0a1 (12)

where a0 = m(m# 1)(2(1+⇡f )+⇡r)+n(2(n# 1)+m(1+
⇡f + ⇡r)). The average number of triads at time t is

F0 +m⇡f (1 + ⇡r)t+ a0a1

t�1X

⌧=1

1

N⌧
(13)

where F0 is the number of triads of the initial network.

To estimate the total number of paths of length two that
are formed when node i attaches to the network, consider
the following three cases. First, consider a path pij =
(i, j0j), i.e., when a path starts at node i. Node i has
on average m + m⇡f outgoing edges established through
events triggered by mechanisms M1 and M2. Each outgoing
neighbor of node i has on average m + m⇡f + m⇡r + n

outgoing neighbors, so that the number of paths of length
two involving node i increases by m(1 + ⇡f )a1. Second,
consider a path pji = (j, j0, i) that ends with an incoming
edge at node i. Node i has n + m⇡r incoming neighbors
(established based on mechanism M3), and each incoming
neighbor has on average m+m⇡f+m⇡r+n incoming edges.
The number of paths of length two involving node i increases
every time instant by (n+m⇡r)a1. Finally, consider a path
pjj0 = (j, i, j0) where node i lies in the middle. Because
node i has m+m⇡f outgoing edges and n+m⇡r incoming
edges, the number of paths of length two increases every time
t by m(1 + ⇡f )(n+m⇡r). So the average number of paths
of length two that a new node establishes when it attaches
to the network is

a

2
1 +m(1 + ⇡f )(n+m⇡r) (14)

Multiplying eq. (14) by the number of nodes in the network
and taking into account the initial network, the total number
of paths at time t yields

P0 + (a2
1 +m(1 + ⇡f )(n+m⇡r))t (15)

where P0 is the number of paths of length two of the initial
network. The global clustering coefficient is given by the
ratio between eq. (13) and eq. (15), which equals

C(t) =
F0 +m⇡f (1 + ⇡r)t+ a0a1

Pt�1
⌧=1

1
N⌧

P0 + (a2
1 +m(1 + ⇡f )(n+m⇡r)) t

(16)

Since a1 = m(1 + ⇡f + ⇡r) + n, if t is sufficiently large,
then P0 ( (a2

1 + m(1 + ⇡f )(n + m⇡r))t. Moreover, due
to assumption A2, starting from an initial network with N0

nodes, the number of nodes at time t# 1 is Nt�1 = N0+t# 1.
As t % & , the global clustering coefficient C(t) converges

to

C

⇤ =
m⇡f (1 + ⇡r)

(m(1 + ⇡f + ⇡r) + n)2 +m(1 + ⇡f )(n+m⇡r)
(17)

Theorem 3 implies that the asymptotic behavior of C(t)
does not depend on the initial network G(0). In general,
the resulting global clustering coefficient ranges between
0 $ C

⇤ $ 0.25. Highly-clustered networks are formed when
reciprocity is low and every new node attaches to only one
node (m = 1).

V. DYNAMICS OF THE GLOBAL COEFFICIENTS

Next, we derive the closed-loop forms of both the global
reciprocity and the global clustering coefficients. Using
eq. (11), note that the total number of edges of G(t) is
L0+a1t. Moreover, using eq. (6) we also know the expected
number of reciprocal edges that are formed when a new
node attaches to the network at time t. The total number
of reciprocal edges at t+ 1 as a function of R(t) is

R(t)(L0 + a1t) + 2

✓
m⇡r +

mn

Nt
+

m⇡fn

Nt

◆
(18)

The first term in eq. (18) represents the number of reciprocal
edges at time t, and the second term denotes the number of
new reciprocal edges at time t+1 (i.e., the expected number
of reciprocal edges formed when a new node attaches to the
network). In particular, note that as t % & the number of
new reciprocal edges converges to 2m⇡r. However, based
on assumption A2, Nt = N0 + t, and for small values t,
the combination of edges established by mechanism M3 and
by mechanisms M1 or M3 will lead to additional reciprocal
edges

⇣
mn
Nt

or m⇡fn
Nt

, respectively
⌘

. The global reciprocity
coefficient of the network at t+ 1 is given by

R(t+ 1) =
(L0 + a1t)R(t) + 2m

⇣
⇡r +

n(1+ ⇡f )
Nt

⌘

a1t+ a1 + L0
(19)

Now, solving eq. (19) yields

R(t) =
(a1 + L0)R(0) + 2m⇡rt

a1t+ L0
(20)

+ 2mn(⇡f + 1)
 (N0 + t) #  (N0)

a1t+ L0

where  (·) represents the digamma function. Note that when
there is no random approach for mechanism M3 (n = 0),
the dynamics of reciprocity do not depend on the number of
nodes of the initial network.

To characterize the evolution of clustering, we first need
to describe total number of paths of length two at time t.
Equation (14) describes the number of new paths at time t

(when a new node attaches to the network). The expected
number of paths of length two that are formed when a node
attaches to the network is captured by eq. (14). Let a2 =
a

2
1 + m(1 + ⇡f )(n + m⇡r). The total number of paths at

time t is P0+a2t where P0 denote the initial number of paths
of length two across the entire network. Moreover, eq. (12)
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characterizes the expected number of triads that are formed
when a new node attaches to the network. The total number
of triads at time t+ 1 as a function of C(t) is

C(t)(P0 + a2t) +

✓
m⇡f (1 + ⇡r) + a0

a1

Nt

◆
(21)

where a0 = m(m# 1)(2(1+⇡f )+⇡r)+n(2(n# 1)+m(1+
⇡f + ⇡r)). The first term in eq. (21) represents the number
of triads at time t, and the second term denotes the expected
number of new triads at time t + 1 (according to eq. (12)).
The global clustering coefficient at time t+ 1 is

C(t+ 1) =
(P0 + a2t)C(t) +m⇡f (1 + ⇡r) + a0a1/Nt

a2t+ a2 + P0
(22)

Solving eq. (22) yields

C(t) =
(a2 + P0)C(0) +m⇡f (1 + ⇡r)t

a2t+ P0
(23)

+ a0a1
 (N0 + t) #  (N0)

a2t+ P0

Note that if there is no random approach for mechanism M3
and every new node attaches to only one node (n = 0 and
m = 1), then a0 = 0 and the dynamics of clustering do
not depend on the number of nodes of the initial network.
Moreover, if L0, P0 ( a1 < a2, then according to eqs. (20)
and (23), the response of reciprocity over time is much faster
than that of clustering.

Finally, note that eqs. (19) and (22) represent time-varying
linear systems of the form

y(t+ 1) = f(t, yt) (24)

where f(t, yt) = A(t)y(t) + B(t). The following section
characterizes the stability properties of both global coeffi-
cients based on this closed-loop expression.

VI. STABILITY OF THE GLOBAL COEFFICIENTS

The following theorems describe sufficient conditions for
asymptotic stability of systems of the form represented by
eq. (24).

Theorem 4 (Theorem 4.2 in [9]):Let the sequence {yt}
satisfy a non-autonomous difference equation of the form
of eq. (24) with the function f(t, ·) satisfying a uniform
Lipschitz condition with respect to its second argument for
each time t, (with constant �t $ M < 1). Then every
solution to eq. (24) is asymptotically stable. If the Lipschitz
constants satisfy �t $ 1 then the conclusion is that every
solution is bounded and stable. Further, all solutions are
bounded or all are unbounded.

Theorem 5 (Theorem 4.4 in [9]):Consider eq. (24) with
solution map operator yn = �(n, y0). Assume that, for
each t, �(t, y0) satisfies a uniform Lipschitz condition (with
Lipschitz constant �t) with respect to its second argument
and the values �t $ M < & . Then every solution of eq. (24)
is stable (but need not be bounded). If, furthermore, �t % 0
as t % & then there exists a unique equilibrium solution
to eq. (24) and it is asymptotically stable. If, additionally,

for every t ! N, �t < t for some |⇣| < 1 then the unique
equilibrium solution is exponentially stable.

First, to show the stability of the global reciprocity coef-
ficient, we need to show that eq. (19) satisfies the uniform
Lipschitz condition. Let

fR(t, R(t)) =
R(t)(L0 + a1t) + b1(t)

L0 + a1(t+ 1)

where b1(t) = 2m
⇣
⇡r +

n(1+ ⇡f )
Nt

⌘
. To show that

fR(t, R(t)) satisfies this condition with respect to its second
argument, we need to verify that

) fR(t, x) # fR(t, y)) $ �t)x # y)

Using eq. (19) we get

) fR(t, x) # fR(t, y))

=

����
x(L0 + a1t) + b1(t)

L0 + a1(t+ 1)
#

y(L0 + a1t) + b1(t)

L0 + a1(t+ 1)

����

= )x # y)

����
(L0 + a1t)

L0 + a1(t+ 1)

����

Note that because
��� L0+ a1t
L0+ a1(t+1)

��� $ 1 for all t we know that
) fR(t, x) # fR(t, y)) $ ) x # y) , which implies that the
Lipschitz condition is satisfied with �t $ 1. Applying The-
orem 4, we can conclude that every solution to fR(t, R(t))
is bounded and stable.

Now, since eq. (20) is a solution to eq. (19), let

�R(t, R(t)) =
(a1 + L0)R(0) + 2m⇡rt

a1t+ L0
+

2mn(⇡f + 1)
 (N0 + t) #  (N0)

a1t+ L0

In particular, since �R(t, R(t)) does not depend explicitly
on R(t), we can assure that it satisfies the Lipschitz con-
dition with respect to the second argument for any fixed t.
Moreover, note that as t goes to infinity

lim
t!1

 (N0 + t)

a1t+ L0
= 0

and
lim
t!1

�R(t, R(t)) =
2m⇡r

m(1 + ⇡f + ⇡r) + n

which implies that as the network grows in size, the solution
�R(t, R(t)) does not depend on R(t) or t. So, the Lipschitz
constant �t % 0 as t % & , and the solution �R(t, R(t)) is
asymptotically stable according to Theorem 5. In particular,
note that the dynamics of the evolution of the global reci-
procity, eq. (19), lead to the theoretical value estimated in
eq. (10).

Similarly, to characterize the stability of the stationary
clustering coefficient of eq. (22), we will first show that it
satisfies the uniform Lipschitz condition. Let

fC(t, C(t)) =
C(t)(P0 + a2t) + b2(t)

P0 + a2(t+ 1)

where b2(t) = m⇡f (1+⇡r)+
a0a1
Nt

. To show that fC(t, C(t))
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satisfies this condition with respect to its second argument,
we need to verify again that ) fC(t, x)# fC(t, y)) $ �t)x#
y) . Using eq. (22) we know that

) fC(t, x) # fC(t, y))

=

����
x(P0 + a2t) + b2(t)

P0 + a2(t+ 1)
#

y(P0 + a2t) + b2(t)

P0 + a2(t+ 1)

����

= )x # y)

����
P0 + a2t

P0 + a2(t+ 1)

����

In particular, because
��� P0+ a2t
P0+ a2(t+1)

��� $ 1 for all t, we know
that ) fC(t, x)# fC(t, y)) $ ) x# y) , which implies that the
Lipschitz constant satisfies �t $ 1. Applying Theorem 4 we
know that fC(t, C(t)) is bounded and stable.

Now, since eq. (23) is a solution to eq. (22), let

�C(t, C(t)) =
(a2 + P0)C(0) +m⇡f (1 + ⇡r)t

a2t+ P0

+ a0a1
 (N0 + t) #  (N0)

a2t+ P0

Since the solution �C does not depend on C(t), we know
that it satisfies the Lipschitz condition with respect to its
second argument for any time t. Moreover, note that as t

tends to infinity

lim
t!1

 (N0 + t)

a2t+ P0
= 0

and

lim
t!1

�C(t, C(t)) =
m⇡f (1 + ⇡r)

a

2
1 +m(1 + ⇡f )(n+m⇡r)

which implies that the Lipschitz constant �t % 0 as
t % & . In other words, as the network grows in size, the
solution �C(t, C(t)) does not depend on C(t) or t. As a
consequence, based on Theorem 5, the solution �C(t, C(t))
is asymptotically stable. In particular, note that the dynamics
of the global clustering, eq. (22), lead to the theoretical value
estimated in eq. (17).

The above results imply that over time the combination of
mechanisms M1-M3 results in network structures with a sta-
tionary pair of global reciprocity and clustering coefficients,
starting from any initial network.

VII. SIMULATIONS

Next, we illustrate the evolution of reciprocity from var-
ious initial networks. The solid lines in Figure 1 represent
the theoretical value based on eq. (19). The dots indicate
the average of 50 simulation runs, starting from an initial
network with N0 = 20 (left plot) and N0 = 50 (right plot).
The dashed line represents the global reciprocity coefficient,
based on eq. (10). In particular, note that for networks with
varying initial global reciprocity coefficients, the combina-
tion of all three mechanisms leads to the same stationary
level of reciprocity. Moreover, note that when the number
of initial nodes increases, the evolution of the reciprocity is
monotonic.

Finally, Figure 2 illustrates the dynamics of the global
clustering coefficient. The solid lines represent the theoretical

(a) (b)

Fig. 1. Evolution of the network reciprocity based on eq. (19); (a) N0 =
20; (b) N0 = 50.

value based on eq. (22), and the dots indicate the average of
50 simulation runs. The dashed line represents the expected
global clustering based on eq. (17). Higher values of the
global clustering coefficient are achieved for low values of
m, with no random response (n = 0).

(a) (b)

Fig. 2. Evolution of the global clustering based on eq. (22); (a) N0 = 20;
(b) N0 = 50.

REFERENCES

[1] K. Zhao, X. Wang, M. Yu, and B. Gao, “User recommendations in
reciprocal and bipartite social networks–an online dating case study,”
IEEE Intelligent Systems, vol. 29, no. 2, pp. 27–35, Mar 2014.

[2] S. L. Johnson, S. Faraj, and S. Kudaravalli, “Emergence of power laws
in online communities: The role of social mechanisms and preferential
attachment.” MIS Quarterly, vol. 38, no. 3, pp. 795–808, 2014.

[3] K. Guerrero and J. Finke, “On the formation of community structures
from homophilic relationships,” in Proceedings of the American Control
Conference, Montreal, QC, June 2012, pp. 5318–5323.

[4] N. Sastry, D. Manjunath, K. Sollins, and J. Crowcroft, “Data delivery
properties of human contact networks,” IEEE Transactions on Mobile
Computing, vol. 10, no. 6, pp. 868–880, 2011.
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